Metamath Proof Explorer


Theorem fthres2b

Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthres2b.a A = Base C
fthres2b.h H = Hom C
fthres2b.r φ R Subcat D
fthres2b.s φ R Fn S × S
fthres2b.1 φ F : A S
fthres2b.2 φ x A y A x G y : Y F x R F y
Assertion fthres2b φ F C Faith D G F C Faith D cat R G

Proof

Step Hyp Ref Expression
1 fthres2b.a A = Base C
2 fthres2b.h H = Hom C
3 fthres2b.r φ R Subcat D
4 fthres2b.s φ R Fn S × S
5 fthres2b.1 φ F : A S
6 fthres2b.2 φ x A y A x G y : Y F x R F y
7 1 2 3 4 5 6 funcres2b φ F C Func D G F C Func D cat R G
8 7 anbi1d φ F C Func D G x A y A Fun x G y -1 F C Func D cat R G x A y A Fun x G y -1
9 1 isfth F C Faith D G F C Func D G x A y A Fun x G y -1
10 1 isfth F C Faith D cat R G F C Func D cat R G x A y A Fun x G y -1
11 8 9 10 3bitr4g φ F C Faith D G F C Faith D cat R G