Metamath Proof Explorer


Theorem fthres2c

Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)

Ref Expression
Hypotheses fthres2c.a A = Base C
fthres2c.e E = D 𝑠 S
fthres2c.d φ D Cat
fthres2c.r φ S V
fthres2c.1 φ F : A S
Assertion fthres2c φ F C Faith D G F C Faith E G

Proof

Step Hyp Ref Expression
1 fthres2c.a A = Base C
2 fthres2c.e E = D 𝑠 S
3 fthres2c.d φ D Cat
4 fthres2c.r φ S V
5 fthres2c.1 φ F : A S
6 1 2 3 4 5 funcres2c φ F C Func D G F C Func E G
7 6 anbi1d φ F C Func D G x A y A Fun x G y -1 F C Func E G x A y A Fun x G y -1
8 1 isfth F C Faith D G F C Func D G x A y A Fun x G y -1
9 1 isfth F C Faith E G F C Func E G x A y A Fun x G y -1
10 7 8 9 3bitr4g φ F C Faith D G F C Faith E G