Metamath Proof Explorer


Theorem fthsect

Description: A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthsect.b B = Base C
fthsect.h H = Hom C
fthsect.f φ F C Faith D G
fthsect.x φ X B
fthsect.y φ Y B
fthsect.m φ M X H Y
fthsect.n φ N Y H X
fthsect.s S = Sect C
fthsect.t T = Sect D
Assertion fthsect φ M X S Y N X G Y M F X T F Y Y G X N

Proof

Step Hyp Ref Expression
1 fthsect.b B = Base C
2 fthsect.h H = Hom C
3 fthsect.f φ F C Faith D G
4 fthsect.x φ X B
5 fthsect.y φ Y B
6 fthsect.m φ M X H Y
7 fthsect.n φ N Y H X
8 fthsect.s S = Sect C
9 fthsect.t T = Sect D
10 eqid Hom D = Hom D
11 eqid comp C = comp C
12 fthfunc C Faith D C Func D
13 12 ssbri F C Faith D G F C Func D G
14 3 13 syl φ F C Func D G
15 df-br F C Func D G F G C Func D
16 14 15 sylib φ F G C Func D
17 funcrcl F G C Func D C Cat D Cat
18 16 17 syl φ C Cat D Cat
19 18 simpld φ C Cat
20 1 2 11 19 4 5 4 6 7 catcocl φ N X Y comp C X M X H X
21 eqid Id C = Id C
22 1 2 21 19 4 catidcl φ Id C X X H X
23 1 2 10 3 4 4 20 22 fthi φ X G X N X Y comp C X M = X G X Id C X N X Y comp C X M = Id C X
24 eqid comp D = comp D
25 1 2 11 24 14 4 5 4 6 7 funcco φ X G X N X Y comp C X M = Y G X N F X F Y comp D F X X G Y M
26 eqid Id D = Id D
27 1 21 26 14 4 funcid φ X G X Id C X = Id D F X
28 25 27 eqeq12d φ X G X N X Y comp C X M = X G X Id C X Y G X N F X F Y comp D F X X G Y M = Id D F X
29 23 28 bitr3d φ N X Y comp C X M = Id C X Y G X N F X F Y comp D F X X G Y M = Id D F X
30 1 2 11 21 8 19 4 5 6 7 issect2 φ M X S Y N N X Y comp C X M = Id C X
31 eqid Base D = Base D
32 18 simprd φ D Cat
33 1 31 14 funcf1 φ F : B Base D
34 33 4 ffvelrnd φ F X Base D
35 33 5 ffvelrnd φ F Y Base D
36 1 2 10 14 4 5 funcf2 φ X G Y : X H Y F X Hom D F Y
37 36 6 ffvelrnd φ X G Y M F X Hom D F Y
38 1 2 10 14 5 4 funcf2 φ Y G X : Y H X F Y Hom D F X
39 38 7 ffvelrnd φ Y G X N F Y Hom D F X
40 31 10 24 26 9 32 34 35 37 39 issect2 φ X G Y M F X T F Y Y G X N Y G X N F X F Y comp D F X X G Y M = Id D F X
41 29 30 40 3bitr4d φ M X S Y N X G Y M F X T F Y Y G X N