Metamath Proof Explorer


Theorem fucass

Description: Associativity of natural transformation composition. Remark 6.14(b) in Adamek p. 87. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucass.q Q = C FuncCat D
fucass.n N = C Nat D
fucass.x ˙ = comp Q
fucass.r φ R F N G
fucass.s φ S G N H
fucass.t φ T H N K
Assertion fucass φ T G H ˙ K S F G ˙ K R = T F H ˙ K S F G ˙ H R

Proof

Step Hyp Ref Expression
1 fucass.q Q = C FuncCat D
2 fucass.n N = C Nat D
3 fucass.x ˙ = comp Q
4 fucass.r φ R F N G
5 fucass.s φ S G N H
6 fucass.t φ T H N K
7 eqid Base D = Base D
8 eqid Hom D = Hom D
9 eqid comp D = comp D
10 2 natrcl R F N G F C Func D G C Func D
11 4 10 syl φ F C Func D G C Func D
12 11 simpld φ F C Func D
13 funcrcl F C Func D C Cat D Cat
14 12 13 syl φ C Cat D Cat
15 14 simprd φ D Cat
16 15 adantr φ x Base C D Cat
17 eqid Base C = Base C
18 relfunc Rel C Func D
19 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
20 18 12 19 sylancr φ 1 st F C Func D 2 nd F
21 17 7 20 funcf1 φ 1 st F : Base C Base D
22 21 ffvelrnda φ x Base C 1 st F x Base D
23 11 simprd φ G C Func D
24 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
25 18 23 24 sylancr φ 1 st G C Func D 2 nd G
26 17 7 25 funcf1 φ 1 st G : Base C Base D
27 26 ffvelrnda φ x Base C 1 st G x Base D
28 2 natrcl T H N K H C Func D K C Func D
29 6 28 syl φ H C Func D K C Func D
30 29 simpld φ H C Func D
31 1st2ndbr Rel C Func D H C Func D 1 st H C Func D 2 nd H
32 18 30 31 sylancr φ 1 st H C Func D 2 nd H
33 17 7 32 funcf1 φ 1 st H : Base C Base D
34 33 ffvelrnda φ x Base C 1 st H x Base D
35 2 4 nat1st2nd φ R 1 st F 2 nd F N 1 st G 2 nd G
36 35 adantr φ x Base C R 1 st F 2 nd F N 1 st G 2 nd G
37 simpr φ x Base C x Base C
38 2 36 17 8 37 natcl φ x Base C R x 1 st F x Hom D 1 st G x
39 2 5 nat1st2nd φ S 1 st G 2 nd G N 1 st H 2 nd H
40 39 adantr φ x Base C S 1 st G 2 nd G N 1 st H 2 nd H
41 2 40 17 8 37 natcl φ x Base C S x 1 st G x Hom D 1 st H x
42 29 simprd φ K C Func D
43 1st2ndbr Rel C Func D K C Func D 1 st K C Func D 2 nd K
44 18 42 43 sylancr φ 1 st K C Func D 2 nd K
45 17 7 44 funcf1 φ 1 st K : Base C Base D
46 45 ffvelrnda φ x Base C 1 st K x Base D
47 2 6 nat1st2nd φ T 1 st H 2 nd H N 1 st K 2 nd K
48 47 adantr φ x Base C T 1 st H 2 nd H N 1 st K 2 nd K
49 2 48 17 8 37 natcl φ x Base C T x 1 st H x Hom D 1 st K x
50 7 8 9 16 22 27 34 38 41 46 49 catass φ x Base C T x 1 st G x 1 st H x comp D 1 st K x S x 1 st F x 1 st G x comp D 1 st K x R x = T x 1 st F x 1 st H x comp D 1 st K x S x 1 st F x 1 st G x comp D 1 st H x R x
51 5 adantr φ x Base C S G N H
52 6 adantr φ x Base C T H N K
53 1 2 17 9 3 51 52 37 fuccoval φ x Base C T G H ˙ K S x = T x 1 st G x 1 st H x comp D 1 st K x S x
54 53 oveq1d φ x Base C T G H ˙ K S x 1 st F x 1 st G x comp D 1 st K x R x = T x 1 st G x 1 st H x comp D 1 st K x S x 1 st F x 1 st G x comp D 1 st K x R x
55 4 adantr φ x Base C R F N G
56 1 2 17 9 3 55 51 37 fuccoval φ x Base C S F G ˙ H R x = S x 1 st F x 1 st G x comp D 1 st H x R x
57 56 oveq2d φ x Base C T x 1 st F x 1 st H x comp D 1 st K x S F G ˙ H R x = T x 1 st F x 1 st H x comp D 1 st K x S x 1 st F x 1 st G x comp D 1 st H x R x
58 50 54 57 3eqtr4d φ x Base C T G H ˙ K S x 1 st F x 1 st G x comp D 1 st K x R x = T x 1 st F x 1 st H x comp D 1 st K x S F G ˙ H R x
59 58 mpteq2dva φ x Base C T G H ˙ K S x 1 st F x 1 st G x comp D 1 st K x R x = x Base C T x 1 st F x 1 st H x comp D 1 st K x S F G ˙ H R x
60 1 2 3 5 6 fuccocl φ T G H ˙ K S G N K
61 1 2 17 9 3 4 60 fucco φ T G H ˙ K S F G ˙ K R = x Base C T G H ˙ K S x 1 st F x 1 st G x comp D 1 st K x R x
62 1 2 3 4 5 fuccocl φ S F G ˙ H R F N H
63 1 2 17 9 3 62 6 fucco φ T F H ˙ K S F G ˙ H R = x Base C T x 1 st F x 1 st H x comp D 1 st K x S F G ˙ H R x
64 59 61 63 3eqtr4d φ T G H ˙ K S F G ˙ K R = T F H ˙ K S F G ˙ H R