Metamath Proof Explorer


Theorem fucbas

Description: The objects of the functor category are functors from C to D . (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypothesis fucbas.q Q = C FuncCat D
Assertion fucbas C Func D = Base Q

Proof

Step Hyp Ref Expression
1 fucbas.q Q = C FuncCat D
2 eqid C Func D = C Func D
3 eqid C Nat D = C Nat D
4 eqid Base C = Base C
5 eqid comp D = comp D
6 simpl C Cat D Cat C Cat
7 simpr C Cat D Cat D Cat
8 eqid comp Q = comp Q
9 1 2 3 4 5 6 7 8 fuccofval C Cat D Cat comp Q = v C Func D × C Func D , h C Func D 1 st v / f 2 nd v / g b g C Nat D h , a f C Nat D g x Base C b x 1 st f x 1 st g x comp D 1 st h x a x
10 1 2 3 4 5 6 7 9 fucval C Cat D Cat Q = Base ndx C Func D Hom ndx C Nat D comp ndx comp Q
11 catstr Base ndx C Func D Hom ndx C Nat D comp ndx comp Q Struct 1 15
12 baseid Base = Slot Base ndx
13 snsstp1 Base ndx C Func D Base ndx C Func D Hom ndx C Nat D comp ndx comp Q
14 ovexd C Cat D Cat C Func D V
15 eqid Base Q = Base Q
16 10 11 12 13 14 15 strfv3 C Cat D Cat Base Q = C Func D
17 16 eqcomd C Cat D Cat C Func D = Base Q
18 base0 = Base
19 funcrcl f C Func D C Cat D Cat
20 19 con3i ¬ C Cat D Cat ¬ f C Func D
21 20 eq0rdv ¬ C Cat D Cat C Func D =
22 fnfuc FuncCat Fn Cat × Cat
23 22 fndmi dom FuncCat = Cat × Cat
24 23 ndmov ¬ C Cat D Cat C FuncCat D =
25 1 24 eqtrid ¬ C Cat D Cat Q =
26 25 fveq2d ¬ C Cat D Cat Base Q = Base
27 18 21 26 3eqtr4a ¬ C Cat D Cat C Func D = Base Q
28 17 27 pm2.61i C Func D = Base Q