Metamath Proof Explorer


Theorem fuccatid

Description: The functor category is a category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuccat.q Q = C FuncCat D
fuccat.r φ C Cat
fuccat.s φ D Cat
fuccatid.1 1 ˙ = Id D
Assertion fuccatid φ Q Cat Id Q = f C Func D 1 ˙ 1 st f

Proof

Step Hyp Ref Expression
1 fuccat.q Q = C FuncCat D
2 fuccat.r φ C Cat
3 fuccat.s φ D Cat
4 fuccatid.1 1 ˙ = Id D
5 1 fucbas C Func D = Base Q
6 5 a1i φ C Func D = Base Q
7 eqid C Nat D = C Nat D
8 1 7 fuchom C Nat D = Hom Q
9 8 a1i φ C Nat D = Hom Q
10 eqidd φ comp Q = comp Q
11 1 ovexi Q V
12 11 a1i φ Q V
13 biid e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h
14 simpr φ f C Func D f C Func D
15 1 7 4 14 fucidcl φ f C Func D 1 ˙ 1 st f f C Nat D f
16 eqid comp Q = comp Q
17 simpr31 φ e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h r e C Nat D f
18 1 7 16 4 17 fuclid φ e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h 1 ˙ 1 st f e f comp Q f r = r
19 simpr32 φ e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h s f C Nat D g
20 1 7 16 4 19 fucrid φ e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h s f f comp Q g 1 ˙ 1 st f = s
21 1 7 16 17 19 fuccocl φ e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h s e f comp Q g r e C Nat D g
22 simpr33 φ e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h t g C Nat D h
23 1 7 16 17 19 22 fucass φ e C Func D f C Func D g C Func D h C Func D r e C Nat D f s f C Nat D g t g C Nat D h t f g comp Q h s e f comp Q h r = t e g comp Q h s e f comp Q g r
24 6 9 10 12 13 15 18 20 21 23 iscatd2 φ Q Cat Id Q = f C Func D 1 ˙ 1 st f