Metamath Proof Explorer


Theorem fucco

Description: Value of the composition of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucco.q Q = C FuncCat D
fucco.n N = C Nat D
fucco.a A = Base C
fucco.o · ˙ = comp D
fucco.x ˙ = comp Q
fucco.f φ R F N G
fucco.g φ S G N H
Assertion fucco φ S F G ˙ H R = x A S x 1 st F x 1 st G x · ˙ 1 st H x R x

Proof

Step Hyp Ref Expression
1 fucco.q Q = C FuncCat D
2 fucco.n N = C Nat D
3 fucco.a A = Base C
4 fucco.o · ˙ = comp D
5 fucco.x ˙ = comp Q
6 fucco.f φ R F N G
7 fucco.g φ S G N H
8 eqid C Func D = C Func D
9 2 natrcl R F N G F C Func D G C Func D
10 6 9 syl φ F C Func D G C Func D
11 10 simpld φ F C Func D
12 funcrcl F C Func D C Cat D Cat
13 11 12 syl φ C Cat D Cat
14 13 simpld φ C Cat
15 13 simprd φ D Cat
16 1 8 2 3 4 14 15 5 fuccofval φ ˙ = v C Func D × C Func D , h C Func D 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x
17 fvexd φ v = F G h = H 1 st v V
18 simprl φ v = F G h = H v = F G
19 18 fveq2d φ v = F G h = H 1 st v = 1 st F G
20 op1stg F C Func D G C Func D 1 st F G = F
21 10 20 syl φ 1 st F G = F
22 21 adantr φ v = F G h = H 1 st F G = F
23 19 22 eqtrd φ v = F G h = H 1 st v = F
24 fvexd φ v = F G h = H f = F 2 nd v V
25 18 adantr φ v = F G h = H f = F v = F G
26 25 fveq2d φ v = F G h = H f = F 2 nd v = 2 nd F G
27 op2ndg F C Func D G C Func D 2 nd F G = G
28 10 27 syl φ 2 nd F G = G
29 28 ad2antrr φ v = F G h = H f = F 2 nd F G = G
30 26 29 eqtrd φ v = F G h = H f = F 2 nd v = G
31 simpr φ v = F G h = H f = F g = G g = G
32 simprr φ v = F G h = H h = H
33 32 ad2antrr φ v = F G h = H f = F g = G h = H
34 31 33 oveq12d φ v = F G h = H f = F g = G g N h = G N H
35 simplr φ v = F G h = H f = F g = G f = F
36 35 31 oveq12d φ v = F G h = H f = F g = G f N g = F N G
37 35 fveq2d φ v = F G h = H f = F g = G 1 st f = 1 st F
38 37 fveq1d φ v = F G h = H f = F g = G 1 st f x = 1 st F x
39 31 fveq2d φ v = F G h = H f = F g = G 1 st g = 1 st G
40 39 fveq1d φ v = F G h = H f = F g = G 1 st g x = 1 st G x
41 38 40 opeq12d φ v = F G h = H f = F g = G 1 st f x 1 st g x = 1 st F x 1 st G x
42 33 fveq2d φ v = F G h = H f = F g = G 1 st h = 1 st H
43 42 fveq1d φ v = F G h = H f = F g = G 1 st h x = 1 st H x
44 41 43 oveq12d φ v = F G h = H f = F g = G 1 st f x 1 st g x · ˙ 1 st h x = 1 st F x 1 st G x · ˙ 1 st H x
45 44 oveqd φ v = F G h = H f = F g = G b x 1 st f x 1 st g x · ˙ 1 st h x a x = b x 1 st F x 1 st G x · ˙ 1 st H x a x
46 45 mpteq2dv φ v = F G h = H f = F g = G x A b x 1 st f x 1 st g x · ˙ 1 st h x a x = x A b x 1 st F x 1 st G x · ˙ 1 st H x a x
47 34 36 46 mpoeq123dv φ v = F G h = H f = F g = G b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x = b G N H , a F N G x A b x 1 st F x 1 st G x · ˙ 1 st H x a x
48 24 30 47 csbied2 φ v = F G h = H f = F 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x = b G N H , a F N G x A b x 1 st F x 1 st G x · ˙ 1 st H x a x
49 17 23 48 csbied2 φ v = F G h = H 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x = b G N H , a F N G x A b x 1 st F x 1 st G x · ˙ 1 st H x a x
50 opelxpi F C Func D G C Func D F G C Func D × C Func D
51 10 50 syl φ F G C Func D × C Func D
52 2 natrcl S G N H G C Func D H C Func D
53 7 52 syl φ G C Func D H C Func D
54 53 simprd φ H C Func D
55 ovex G N H V
56 ovex F N G V
57 55 56 mpoex b G N H , a F N G x A b x 1 st F x 1 st G x · ˙ 1 st H x a x V
58 57 a1i φ b G N H , a F N G x A b x 1 st F x 1 st G x · ˙ 1 st H x a x V
59 16 49 51 54 58 ovmpod φ F G ˙ H = b G N H , a F N G x A b x 1 st F x 1 st G x · ˙ 1 st H x a x
60 simprl φ b = S a = R b = S
61 60 fveq1d φ b = S a = R b x = S x
62 simprr φ b = S a = R a = R
63 62 fveq1d φ b = S a = R a x = R x
64 61 63 oveq12d φ b = S a = R b x 1 st F x 1 st G x · ˙ 1 st H x a x = S x 1 st F x 1 st G x · ˙ 1 st H x R x
65 64 mpteq2dv φ b = S a = R x A b x 1 st F x 1 st G x · ˙ 1 st H x a x = x A S x 1 st F x 1 st G x · ˙ 1 st H x R x
66 3 fvexi A V
67 66 mptex x A S x 1 st F x 1 st G x · ˙ 1 st H x R x V
68 67 a1i φ x A S x 1 st F x 1 st G x · ˙ 1 st H x R x V
69 59 65 7 6 68 ovmpod φ S F G ˙ H R = x A S x 1 st F x 1 st G x · ˙ 1 st H x R x