Metamath Proof Explorer


Theorem fucid

Description: The identity morphism in the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucid.q Q = C FuncCat D
fucid.i I = Id Q
fucid.1 1 ˙ = Id D
fucid.f φ F C Func D
Assertion fucid φ I F = 1 ˙ 1 st F

Proof

Step Hyp Ref Expression
1 fucid.q Q = C FuncCat D
2 fucid.i I = Id Q
3 fucid.1 1 ˙ = Id D
4 fucid.f φ F C Func D
5 funcrcl F C Func D C Cat D Cat
6 4 5 syl φ C Cat D Cat
7 6 simpld φ C Cat
8 6 simprd φ D Cat
9 1 7 8 3 fuccatid φ Q Cat Id Q = f C Func D 1 ˙ 1 st f
10 9 simprd φ Id Q = f C Func D 1 ˙ 1 st f
11 2 10 eqtrid φ I = f C Func D 1 ˙ 1 st f
12 simpr φ f = F f = F
13 12 fveq2d φ f = F 1 st f = 1 st F
14 13 coeq2d φ f = F 1 ˙ 1 st f = 1 ˙ 1 st F
15 3 fvexi 1 ˙ V
16 fvex 1 st F V
17 15 16 coex 1 ˙ 1 st F V
18 17 a1i φ 1 ˙ 1 st F V
19 11 14 4 18 fvmptd φ I F = 1 ˙ 1 st F