Metamath Proof Explorer


Theorem fucinv

Description: Two natural transformations are inverses of each other iff all the components are inverse. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses fuciso.q Q = C FuncCat D
fuciso.b B = Base C
fuciso.n N = C Nat D
fuciso.f φ F C Func D
fuciso.g φ G C Func D
fucinv.i I = Inv Q
fucinv.j J = Inv D
Assertion fucinv φ U F I G V U F N G V G N F x B U x 1 st F x J 1 st G x V x

Proof

Step Hyp Ref Expression
1 fuciso.q Q = C FuncCat D
2 fuciso.b B = Base C
3 fuciso.n N = C Nat D
4 fuciso.f φ F C Func D
5 fuciso.g φ G C Func D
6 fucinv.i I = Inv Q
7 fucinv.j J = Inv D
8 eqid Sect Q = Sect Q
9 eqid Sect D = Sect D
10 1 2 3 4 5 8 9 fucsect φ U F Sect Q G V U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x
11 1 2 3 5 4 8 9 fucsect φ V G Sect Q F U V G N F U F N G x B V x 1 st G x Sect D 1 st F x U x
12 10 11 anbi12d φ U F Sect Q G V V G Sect Q F U U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x V G N F U F N G x B V x 1 st G x Sect D 1 st F x U x
13 1 fucbas C Func D = Base Q
14 funcrcl F C Func D C Cat D Cat
15 4 14 syl φ C Cat D Cat
16 15 simpld φ C Cat
17 15 simprd φ D Cat
18 1 16 17 fuccat φ Q Cat
19 13 6 18 4 5 8 isinv φ U F I G V U F Sect Q G V V G Sect Q F U
20 eqid Base D = Base D
21 17 adantr φ x B D Cat
22 relfunc Rel C Func D
23 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
24 22 4 23 sylancr φ 1 st F C Func D 2 nd F
25 2 20 24 funcf1 φ 1 st F : B Base D
26 25 ffvelrnda φ x B 1 st F x Base D
27 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
28 22 5 27 sylancr φ 1 st G C Func D 2 nd G
29 2 20 28 funcf1 φ 1 st G : B Base D
30 29 ffvelrnda φ x B 1 st G x Base D
31 20 7 21 26 30 9 isinv φ x B U x 1 st F x J 1 st G x V x U x 1 st F x Sect D 1 st G x V x V x 1 st G x Sect D 1 st F x U x
32 31 ralbidva φ x B U x 1 st F x J 1 st G x V x x B U x 1 st F x Sect D 1 st G x V x V x 1 st G x Sect D 1 st F x U x
33 r19.26 x B U x 1 st F x Sect D 1 st G x V x V x 1 st G x Sect D 1 st F x U x x B U x 1 st F x Sect D 1 st G x V x x B V x 1 st G x Sect D 1 st F x U x
34 32 33 bitrdi φ x B U x 1 st F x J 1 st G x V x x B U x 1 st F x Sect D 1 st G x V x x B V x 1 st G x Sect D 1 st F x U x
35 34 anbi2d φ U F N G V G N F x B U x 1 st F x J 1 st G x V x U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x x B V x 1 st G x Sect D 1 st F x U x
36 df-3an U F N G V G N F x B U x 1 st F x J 1 st G x V x U F N G V G N F x B U x 1 st F x J 1 st G x V x
37 df-3an U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x
38 3ancoma V G N F U F N G x B V x 1 st G x Sect D 1 st F x U x U F N G V G N F x B V x 1 st G x Sect D 1 st F x U x
39 df-3an U F N G V G N F x B V x 1 st G x Sect D 1 st F x U x U F N G V G N F x B V x 1 st G x Sect D 1 st F x U x
40 38 39 bitri V G N F U F N G x B V x 1 st G x Sect D 1 st F x U x U F N G V G N F x B V x 1 st G x Sect D 1 st F x U x
41 37 40 anbi12i U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x V G N F U F N G x B V x 1 st G x Sect D 1 st F x U x U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x U F N G V G N F x B V x 1 st G x Sect D 1 st F x U x
42 anandi U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x x B V x 1 st G x Sect D 1 st F x U x U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x U F N G V G N F x B V x 1 st G x Sect D 1 st F x U x
43 41 42 bitr4i U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x V G N F U F N G x B V x 1 st G x Sect D 1 st F x U x U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x x B V x 1 st G x Sect D 1 st F x U x
44 35 36 43 3bitr4g φ U F N G V G N F x B U x 1 st F x J 1 st G x V x U F N G V G N F x B U x 1 st F x Sect D 1 st G x V x V G N F U F N G x B V x 1 st G x Sect D 1 st F x U x
45 12 19 44 3bitr4d φ U F I G V U F N G V G N F x B U x 1 st F x J 1 st G x V x