Metamath Proof Explorer


Theorem fuclid

Description: Left identity of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuclid.q Q = C FuncCat D
fuclid.n N = C Nat D
fuclid.x ˙ = comp Q
fuclid.1 1 ˙ = Id D
fuclid.r φ R F N G
Assertion fuclid φ 1 ˙ 1 st G F G ˙ G R = R

Proof

Step Hyp Ref Expression
1 fuclid.q Q = C FuncCat D
2 fuclid.n N = C Nat D
3 fuclid.x ˙ = comp Q
4 fuclid.1 1 ˙ = Id D
5 fuclid.r φ R F N G
6 eqid Base C = Base C
7 eqid Base D = Base D
8 relfunc Rel C Func D
9 2 natrcl R F N G F C Func D G C Func D
10 5 9 syl φ F C Func D G C Func D
11 10 simprd φ G C Func D
12 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
13 8 11 12 sylancr φ 1 st G C Func D 2 nd G
14 6 7 13 funcf1 φ 1 st G : Base C Base D
15 fvco3 1 st G : Base C Base D x Base C 1 ˙ 1 st G x = 1 ˙ 1 st G x
16 14 15 sylan φ x Base C 1 ˙ 1 st G x = 1 ˙ 1 st G x
17 16 oveq1d φ x Base C 1 ˙ 1 st G x 1 st F x 1 st G x comp D 1 st G x R x = 1 ˙ 1 st G x 1 st F x 1 st G x comp D 1 st G x R x
18 eqid Hom D = Hom D
19 10 simpld φ F C Func D
20 funcrcl F C Func D C Cat D Cat
21 19 20 syl φ C Cat D Cat
22 21 simprd φ D Cat
23 22 adantr φ x Base C D Cat
24 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
25 8 19 24 sylancr φ 1 st F C Func D 2 nd F
26 6 7 25 funcf1 φ 1 st F : Base C Base D
27 26 ffvelrnda φ x Base C 1 st F x Base D
28 eqid comp D = comp D
29 14 ffvelrnda φ x Base C 1 st G x Base D
30 2 5 nat1st2nd φ R 1 st F 2 nd F N 1 st G 2 nd G
31 30 adantr φ x Base C R 1 st F 2 nd F N 1 st G 2 nd G
32 simpr φ x Base C x Base C
33 2 31 6 18 32 natcl φ x Base C R x 1 st F x Hom D 1 st G x
34 7 18 4 23 27 28 29 33 catlid φ x Base C 1 ˙ 1 st G x 1 st F x 1 st G x comp D 1 st G x R x = R x
35 17 34 eqtrd φ x Base C 1 ˙ 1 st G x 1 st F x 1 st G x comp D 1 st G x R x = R x
36 35 mpteq2dva φ x Base C 1 ˙ 1 st G x 1 st F x 1 st G x comp D 1 st G x R x = x Base C R x
37 1 2 4 11 fucidcl φ 1 ˙ 1 st G G N G
38 1 2 6 28 3 5 37 fucco φ 1 ˙ 1 st G F G ˙ G R = x Base C 1 ˙ 1 st G x 1 st F x 1 st G x comp D 1 st G x R x
39 2 30 6 natfn φ R Fn Base C
40 dffn5 R Fn Base C R = x Base C R x
41 39 40 sylib φ R = x Base C R x
42 36 38 41 3eqtr4d φ 1 ˙ 1 st G F G ˙ G R = R