Metamath Proof Explorer


Theorem fucpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses fucpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
fucpropd.2 φ comp 𝑓 A = comp 𝑓 B
fucpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
fucpropd.4 φ comp 𝑓 C = comp 𝑓 D
fucpropd.a φ A Cat
fucpropd.b φ B Cat
fucpropd.c φ C Cat
fucpropd.d φ D Cat
Assertion fucpropd φ A FuncCat C = B FuncCat D

Proof

Step Hyp Ref Expression
1 fucpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
2 fucpropd.2 φ comp 𝑓 A = comp 𝑓 B
3 fucpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
4 fucpropd.4 φ comp 𝑓 C = comp 𝑓 D
5 fucpropd.a φ A Cat
6 fucpropd.b φ B Cat
7 fucpropd.c φ C Cat
8 fucpropd.d φ D Cat
9 1 2 3 4 5 6 7 8 funcpropd φ A Func C = B Func D
10 9 opeq2d φ Base ndx A Func C = Base ndx B Func D
11 1 2 3 4 5 6 7 8 natpropd φ A Nat C = B Nat D
12 11 opeq2d φ Hom ndx A Nat C = Hom ndx B Nat D
13 9 sqxpeqd φ A Func C × A Func C = B Func D × B Func D
14 9 adantr φ v A Func C × A Func C A Func C = B Func D
15 nfv f φ v A Func C × A Func C h A Func C
16 nfcsb1v _ f 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
17 16 a1i φ v A Func C × A Func C h A Func C _ f 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
18 fvexd φ v A Func C × A Func C h A Func C 1 st v V
19 nfv g φ v A Func C × A Func C h A Func C f = 1 st v
20 nfcsb1v _ g 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
21 20 a1i φ v A Func C × A Func C h A Func C f = 1 st v _ g 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
22 fvexd φ v A Func C × A Func C h A Func C f = 1 st v 2 nd v V
23 11 ad3antrrr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v A Nat C = B Nat D
24 23 oveqd φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v g A Nat C h = g B Nat D h
25 23 oveqdr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h f A Nat C g = f B Nat D g
26 1 homfeqbas φ Base A = Base B
27 26 ad4antr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g Base A = Base B
28 eqid Base C = Base C
29 eqid Hom C = Hom C
30 eqid comp C = comp C
31 eqid comp D = comp D
32 3 ad5antr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A Hom 𝑓 C = Hom 𝑓 D
33 4 ad5antr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A comp 𝑓 C = comp 𝑓 D
34 eqid Base A = Base A
35 relfunc Rel A Func C
36 simpllr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g f = 1 st v
37 simp-4r φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g v A Func C × A Func C h A Func C
38 37 simpld φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g v A Func C × A Func C
39 xp1st v A Func C × A Func C 1 st v A Func C
40 38 39 syl φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g 1 st v A Func C
41 36 40 eqeltrd φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g f A Func C
42 1st2ndbr Rel A Func C f A Func C 1 st f A Func C 2 nd f
43 35 41 42 sylancr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g 1 st f A Func C 2 nd f
44 34 28 43 funcf1 φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g 1 st f : Base A Base C
45 44 ffvelrnda φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A 1 st f x Base C
46 simplr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g g = 2 nd v
47 xp2nd v A Func C × A Func C 2 nd v A Func C
48 38 47 syl φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g 2 nd v A Func C
49 46 48 eqeltrd φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g g A Func C
50 1st2ndbr Rel A Func C g A Func C 1 st g A Func C 2 nd g
51 35 49 50 sylancr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g 1 st g A Func C 2 nd g
52 34 28 51 funcf1 φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g 1 st g : Base A Base C
53 52 ffvelrnda φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A 1 st g x Base C
54 37 simprd φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g h A Func C
55 1st2ndbr Rel A Func C h A Func C 1 st h A Func C 2 nd h
56 35 54 55 sylancr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g 1 st h A Func C 2 nd h
57 34 28 56 funcf1 φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g 1 st h : Base A Base C
58 57 ffvelrnda φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A 1 st h x Base C
59 eqid A Nat C = A Nat C
60 simplrr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A a f A Nat C g
61 59 60 nat1st2nd φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A a 1 st f 2 nd f A Nat C 1 st g 2 nd g
62 simpr φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A x Base A
63 59 61 34 29 62 natcl φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A a x 1 st f x Hom C 1 st g x
64 simplrl φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A b g A Nat C h
65 59 64 nat1st2nd φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A b 1 st g 2 nd g A Nat C 1 st h 2 nd h
66 59 65 34 29 62 natcl φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A b x 1 st g x Hom C 1 st h x
67 28 29 30 31 32 33 45 53 58 63 66 comfeqval φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = b x 1 st f x 1 st g x comp D 1 st h x a x
68 27 67 mpteq12dva φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
69 24 25 68 mpoeq123dva φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
70 csbeq1a g = 2 nd v b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x = 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
71 70 adantl φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x = 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
72 69 71 eqtrd φ v A Func C × A Func C h A Func C f = 1 st v g = 2 nd v b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
73 19 21 22 72 csbiedf φ v A Func C × A Func C h A Func C f = 1 st v 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
74 csbeq1a f = 1 st v 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x = 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
75 74 adantl φ v A Func C × A Func C h A Func C f = 1 st v 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x = 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
76 73 75 eqtrd φ v A Func C × A Func C h A Func C f = 1 st v 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
77 15 17 18 76 csbiedf φ v A Func C × A Func C h A Func C 1 st v / f 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
78 13 14 77 mpoeq123dva φ v A Func C × A Func C , h A Func C 1 st v / f 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = v B Func D × B Func D , h B Func D 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
79 78 opeq2d φ comp ndx v A Func C × A Func C , h A Func C 1 st v / f 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = comp ndx v B Func D × B Func D , h B Func D 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
80 10 12 79 tpeq123d φ Base ndx A Func C Hom ndx A Nat C comp ndx v A Func C × A Func C , h A Func C 1 st v / f 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = Base ndx B Func D Hom ndx B Nat D comp ndx v B Func D × B Func D , h B Func D 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
81 eqid A FuncCat C = A FuncCat C
82 eqid A Func C = A Func C
83 eqidd φ v A Func C × A Func C , h A Func C 1 st v / f 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x = v A Func C × A Func C , h A Func C 1 st v / f 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x
84 81 82 59 34 30 5 7 83 fucval φ A FuncCat C = Base ndx A Func C Hom ndx A Nat C comp ndx v A Func C × A Func C , h A Func C 1 st v / f 2 nd v / g b g A Nat C h , a f A Nat C g x Base A b x 1 st f x 1 st g x comp C 1 st h x a x
85 eqid B FuncCat D = B FuncCat D
86 eqid B Func D = B Func D
87 eqid B Nat D = B Nat D
88 eqid Base B = Base B
89 eqidd φ v B Func D × B Func D , h B Func D 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x = v B Func D × B Func D , h B Func D 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
90 85 86 87 88 31 6 8 89 fucval φ B FuncCat D = Base ndx B Func D Hom ndx B Nat D comp ndx v B Func D × B Func D , h B Func D 1 st v / f 2 nd v / g b g B Nat D h , a f B Nat D g x Base B b x 1 st f x 1 st g x comp D 1 st h x a x
91 80 84 90 3eqtr4d φ A FuncCat C = B FuncCat D