Metamath Proof Explorer


Theorem fucrid

Description: Right identity of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuclid.q Q = C FuncCat D
fuclid.n N = C Nat D
fuclid.x ˙ = comp Q
fuclid.1 1 ˙ = Id D
fuclid.r φ R F N G
Assertion fucrid φ R F F ˙ G 1 ˙ 1 st F = R

Proof

Step Hyp Ref Expression
1 fuclid.q Q = C FuncCat D
2 fuclid.n N = C Nat D
3 fuclid.x ˙ = comp Q
4 fuclid.1 1 ˙ = Id D
5 fuclid.r φ R F N G
6 eqid Base C = Base C
7 eqid Base D = Base D
8 relfunc Rel C Func D
9 2 natrcl R F N G F C Func D G C Func D
10 5 9 syl φ F C Func D G C Func D
11 10 simpld φ F C Func D
12 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
13 8 11 12 sylancr φ 1 st F C Func D 2 nd F
14 6 7 13 funcf1 φ 1 st F : Base C Base D
15 fvco3 1 st F : Base C Base D x Base C 1 ˙ 1 st F x = 1 ˙ 1 st F x
16 14 15 sylan φ x Base C 1 ˙ 1 st F x = 1 ˙ 1 st F x
17 16 oveq2d φ x Base C R x 1 st F x 1 st F x comp D 1 st G x 1 ˙ 1 st F x = R x 1 st F x 1 st F x comp D 1 st G x 1 ˙ 1 st F x
18 eqid Hom D = Hom D
19 funcrcl F C Func D C Cat D Cat
20 11 19 syl φ C Cat D Cat
21 20 simprd φ D Cat
22 21 adantr φ x Base C D Cat
23 14 ffvelrnda φ x Base C 1 st F x Base D
24 eqid comp D = comp D
25 10 simprd φ G C Func D
26 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
27 8 25 26 sylancr φ 1 st G C Func D 2 nd G
28 6 7 27 funcf1 φ 1 st G : Base C Base D
29 28 ffvelrnda φ x Base C 1 st G x Base D
30 2 5 nat1st2nd φ R 1 st F 2 nd F N 1 st G 2 nd G
31 30 adantr φ x Base C R 1 st F 2 nd F N 1 st G 2 nd G
32 simpr φ x Base C x Base C
33 2 31 6 18 32 natcl φ x Base C R x 1 st F x Hom D 1 st G x
34 7 18 4 22 23 24 29 33 catrid φ x Base C R x 1 st F x 1 st F x comp D 1 st G x 1 ˙ 1 st F x = R x
35 17 34 eqtrd φ x Base C R x 1 st F x 1 st F x comp D 1 st G x 1 ˙ 1 st F x = R x
36 35 mpteq2dva φ x Base C R x 1 st F x 1 st F x comp D 1 st G x 1 ˙ 1 st F x = x Base C R x
37 1 2 4 11 fucidcl φ 1 ˙ 1 st F F N F
38 1 2 6 24 3 37 5 fucco φ R F F ˙ G 1 ˙ 1 st F = x Base C R x 1 st F x 1 st F x comp D 1 st G x 1 ˙ 1 st F x
39 2 30 6 natfn φ R Fn Base C
40 dffn5 R Fn Base C R = x Base C R x
41 39 40 sylib φ R = x Base C R x
42 36 38 41 3eqtr4d φ R F F ˙ G 1 ˙ 1 st F = R