Step |
Hyp |
Ref |
Expression |
1 |
|
fullpropd.1 |
|
2 |
|
fullpropd.2 |
|
3 |
|
fullpropd.3 |
|
4 |
|
fullpropd.4 |
|
5 |
|
fullpropd.a |
|
6 |
|
fullpropd.b |
|
7 |
|
fullpropd.c |
|
8 |
|
fullpropd.d |
|
9 |
|
relfull |
|
10 |
|
relfull |
|
11 |
1
|
homfeqbas |
|
12 |
11
|
adantr |
|
13 |
12
|
adantr |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
3
|
ad3antrrr |
|
18 |
|
eqid |
|
19 |
|
simpllr |
|
20 |
18 14 19
|
funcf1 |
|
21 |
|
simplr |
|
22 |
20 21
|
ffvelrnd |
|
23 |
|
simpr |
|
24 |
20 23
|
ffvelrnd |
|
25 |
14 15 16 17 22 24
|
homfeqval |
|
26 |
25
|
eqeq2d |
|
27 |
13 26
|
raleqbidva |
|
28 |
12 27
|
raleqbidva |
|
29 |
28
|
pm5.32da |
|
30 |
1 2 3 4 5 6 7 8
|
funcpropd |
|
31 |
30
|
breqd |
|
32 |
31
|
anbi1d |
|
33 |
29 32
|
bitrd |
|
34 |
18 15
|
isfull |
|
35 |
|
eqid |
|
36 |
35 16
|
isfull |
|
37 |
33 34 36
|
3bitr4g |
|
38 |
9 10 37
|
eqbrrdiv |
|