Metamath Proof Explorer


Theorem fullpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fullpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
fullpropd.2 φ comp 𝑓 A = comp 𝑓 B
fullpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
fullpropd.4 φ comp 𝑓 C = comp 𝑓 D
fullpropd.a φ A V
fullpropd.b φ B V
fullpropd.c φ C V
fullpropd.d φ D V
Assertion fullpropd φ A Full C = B Full D

Proof

Step Hyp Ref Expression
1 fullpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
2 fullpropd.2 φ comp 𝑓 A = comp 𝑓 B
3 fullpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
4 fullpropd.4 φ comp 𝑓 C = comp 𝑓 D
5 fullpropd.a φ A V
6 fullpropd.b φ B V
7 fullpropd.c φ C V
8 fullpropd.d φ D V
9 relfull Rel A Full C
10 relfull Rel B Full D
11 1 homfeqbas φ Base A = Base B
12 11 adantr φ f A Func C g Base A = Base B
13 12 adantr φ f A Func C g x Base A Base A = Base B
14 eqid Base C = Base C
15 eqid Hom C = Hom C
16 eqid Hom D = Hom D
17 3 ad3antrrr φ f A Func C g x Base A y Base A Hom 𝑓 C = Hom 𝑓 D
18 eqid Base A = Base A
19 simpllr φ f A Func C g x Base A y Base A f A Func C g
20 18 14 19 funcf1 φ f A Func C g x Base A y Base A f : Base A Base C
21 simplr φ f A Func C g x Base A y Base A x Base A
22 20 21 ffvelrnd φ f A Func C g x Base A y Base A f x Base C
23 simpr φ f A Func C g x Base A y Base A y Base A
24 20 23 ffvelrnd φ f A Func C g x Base A y Base A f y Base C
25 14 15 16 17 22 24 homfeqval φ f A Func C g x Base A y Base A f x Hom C f y = f x Hom D f y
26 25 eqeq2d φ f A Func C g x Base A y Base A ran x g y = f x Hom C f y ran x g y = f x Hom D f y
27 13 26 raleqbidva φ f A Func C g x Base A y Base A ran x g y = f x Hom C f y y Base B ran x g y = f x Hom D f y
28 12 27 raleqbidva φ f A Func C g x Base A y Base A ran x g y = f x Hom C f y x Base B y Base B ran x g y = f x Hom D f y
29 28 pm5.32da φ f A Func C g x Base A y Base A ran x g y = f x Hom C f y f A Func C g x Base B y Base B ran x g y = f x Hom D f y
30 1 2 3 4 5 6 7 8 funcpropd φ A Func C = B Func D
31 30 breqd φ f A Func C g f B Func D g
32 31 anbi1d φ f A Func C g x Base B y Base B ran x g y = f x Hom D f y f B Func D g x Base B y Base B ran x g y = f x Hom D f y
33 29 32 bitrd φ f A Func C g x Base A y Base A ran x g y = f x Hom C f y f B Func D g x Base B y Base B ran x g y = f x Hom D f y
34 18 15 isfull f A Full C g f A Func C g x Base A y Base A ran x g y = f x Hom C f y
35 eqid Base B = Base B
36 35 16 isfull f B Full D g f B Func D g x Base B y Base B ran x g y = f x Hom D f y
37 33 34 36 3bitr4g φ f A Full C g f B Full D g
38 9 10 37 eqbrrdiv φ A Full C = B Full D