Metamath Proof Explorer


Theorem fullres2c

Description: Condition for a full functor to also be a full functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)

Ref Expression
Hypotheses ffthres2c.a A = Base C
ffthres2c.e E = D 𝑠 S
ffthres2c.d φ D Cat
ffthres2c.r φ S V
ffthres2c.1 φ F : A S
Assertion fullres2c φ F C Full D G F C Full E G

Proof

Step Hyp Ref Expression
1 ffthres2c.a A = Base C
2 ffthres2c.e E = D 𝑠 S
3 ffthres2c.d φ D Cat
4 ffthres2c.r φ S V
5 ffthres2c.1 φ F : A S
6 1 2 3 4 5 funcres2c φ F C Func D G F C Func E G
7 eqid Hom D = Hom D
8 2 7 resshom S V Hom D = Hom E
9 4 8 syl φ Hom D = Hom E
10 9 oveqd φ F x Hom D F y = F x Hom E F y
11 10 eqeq2d φ ran x G y = F x Hom D F y ran x G y = F x Hom E F y
12 11 2ralbidv φ x A y A ran x G y = F x Hom D F y x A y A ran x G y = F x Hom E F y
13 6 12 anbi12d φ F C Func D G x A y A ran x G y = F x Hom D F y F C Func E G x A y A ran x G y = F x Hom E F y
14 1 7 isfull F C Full D G F C Func D G x A y A ran x G y = F x Hom D F y
15 eqid Hom E = Hom E
16 1 15 isfull F C Full E G F C Func E G x A y A ran x G y = F x Hom E F y
17 13 14 16 3bitr4g φ F C Full D G F C Full E G