| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fullsubc.b |
|
| 2 |
|
fullsubc.h |
|
| 3 |
|
fullsubc.c |
|
| 4 |
|
fullsubc.s |
|
| 5 |
|
fullsubc.d |
|
| 6 |
|
fullsubc.e |
|
| 7 |
|
eqid |
|
| 8 |
4
|
adantr |
|
| 9 |
|
simprl |
|
| 10 |
8 9
|
sseldd |
|
| 11 |
|
simprr |
|
| 12 |
8 11
|
sseldd |
|
| 13 |
2 1 7 10 12
|
homfval |
|
| 14 |
9 11
|
ovresd |
|
| 15 |
2 1
|
homffn |
|
| 16 |
|
xpss12 |
|
| 17 |
4 4 16
|
syl2anc |
|
| 18 |
|
fnssres |
|
| 19 |
15 17 18
|
sylancr |
|
| 20 |
6 1 3 19 4
|
reschom |
|
| 21 |
20
|
oveqdr |
|
| 22 |
14 21
|
eqtr3d |
|
| 23 |
5 1
|
ressbas2 |
|
| 24 |
4 23
|
syl |
|
| 25 |
|
fvex |
|
| 26 |
24 25
|
eqeltrdi |
|
| 27 |
5 7
|
resshom |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
oveqdr |
|
| 30 |
13 22 29
|
3eqtr3rd |
|
| 31 |
30
|
ralrimivva |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
6 1 3 19 4
|
rescbas |
|
| 35 |
32 33 24 34
|
homfeq |
|
| 36 |
31 35
|
mpbird |
|
| 37 |
|
eqid |
|
| 38 |
5 37
|
ressco |
|
| 39 |
26 38
|
syl |
|
| 40 |
6 1 3 19 4 37
|
rescco |
|
| 41 |
39 40
|
eqtr3d |
|
| 42 |
41 36
|
comfeqd |
|
| 43 |
36 42
|
jca |
|