| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fullsubc.b |
|
| 2 |
|
fullsubc.h |
|
| 3 |
|
fullsubc.c |
|
| 4 |
|
fullsubc.s |
|
| 5 |
2 1
|
homffn |
|
| 6 |
1
|
fvexi |
|
| 7 |
|
sscres |
|
| 8 |
5 6 7
|
mp2an |
|
| 9 |
8
|
a1i |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
3
|
adantr |
|
| 13 |
4
|
sselda |
|
| 14 |
1 10 11 12 13
|
catidcl |
|
| 15 |
|
simpr |
|
| 16 |
15 15
|
ovresd |
|
| 17 |
2 1 10 13 13
|
homfval |
|
| 18 |
16 17
|
eqtrd |
|
| 19 |
14 18
|
eleqtrrd |
|
| 20 |
|
eqid |
|
| 21 |
12
|
ad3antrrr |
|
| 22 |
13
|
ad3antrrr |
|
| 23 |
4
|
adantr |
|
| 24 |
23
|
sselda |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
adantr |
|
| 27 |
23
|
adantr |
|
| 28 |
27
|
sselda |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simprl |
|
| 31 |
|
simprr |
|
| 32 |
1 10 20 21 22 26 29 30 31
|
catcocl |
|
| 33 |
15
|
ad3antrrr |
|
| 34 |
|
simplr |
|
| 35 |
33 34
|
ovresd |
|
| 36 |
2 1 10 22 29
|
homfval |
|
| 37 |
35 36
|
eqtrd |
|
| 38 |
32 37
|
eleqtrrd |
|
| 39 |
38
|
ralrimivva |
|
| 40 |
|
simplr |
|
| 41 |
|
simpr |
|
| 42 |
40 41
|
ovresd |
|
| 43 |
13
|
adantr |
|
| 44 |
2 1 10 43 24
|
homfval |
|
| 45 |
42 44
|
eqtrd |
|
| 46 |
45
|
adantr |
|
| 47 |
|
simplr |
|
| 48 |
|
simpr |
|
| 49 |
47 48
|
ovresd |
|
| 50 |
2 1 10 25 28
|
homfval |
|
| 51 |
49 50
|
eqtrd |
|
| 52 |
51
|
raleqdv |
|
| 53 |
46 52
|
raleqbidv |
|
| 54 |
39 53
|
mpbird |
|
| 55 |
54
|
ralrimiva |
|
| 56 |
55
|
ralrimiva |
|
| 57 |
19 56
|
jca |
|
| 58 |
57
|
ralrimiva |
|
| 59 |
|
xpss12 |
|
| 60 |
4 4 59
|
syl2anc |
|
| 61 |
|
fnssres |
|
| 62 |
5 60 61
|
sylancr |
|
| 63 |
2 11 20 3 62
|
issubc2 |
|
| 64 |
9 58 63
|
mpbir2and |
|