Step |
Hyp |
Ref |
Expression |
1 |
|
fullthinc.b |
|
2 |
|
fullthinc.j |
|
3 |
|
fullthinc.h |
|
4 |
|
fullthinc.d |
|
5 |
|
fullthinc.f |
|
6 |
1 2 3
|
isfull2 |
|
7 |
|
foeq2 |
|
8 |
|
fo00 |
|
9 |
8
|
simprbi |
|
10 |
7 9
|
biimtrdi |
|
11 |
10
|
com12 |
|
12 |
11
|
2ralimi |
|
13 |
6 12
|
simplbiim |
|
14 |
13
|
adantl |
|
15 |
|
simplr |
|
16 |
|
imor |
|
17 |
|
simplr |
|
18 |
|
simprl |
|
19 |
|
simprr |
|
20 |
1 3 2 17 18 19
|
funcf2 |
|
21 |
20
|
adantr |
|
22 |
|
simpr |
|
23 |
22
|
neqned |
|
24 |
|
fdomne0 |
|
25 |
21 23 24
|
syl2anc |
|
26 |
25
|
simprd |
|
27 |
|
simplll |
|
28 |
|
eqid |
|
29 |
17
|
adantr |
|
30 |
1 28 29
|
funcf1 |
|
31 |
18
|
adantr |
|
32 |
30 31
|
ffvelcdmd |
|
33 |
19
|
adantr |
|
34 |
30 33
|
ffvelcdmd |
|
35 |
|
eqidd |
|
36 |
2
|
a1i |
|
37 |
27 32 34 35 36
|
thincn0eu |
|
38 |
26 37
|
mpbid |
|
39 |
|
eusn |
|
40 |
38 39
|
sylib |
|
41 |
25
|
simpld |
|
42 |
|
foconst |
|
43 |
|
feq3 |
|
44 |
43
|
anbi1d |
|
45 |
|
foeq3 |
|
46 |
44 45
|
imbi12d |
|
47 |
42 46
|
mpbiri |
|
48 |
47
|
exlimiv |
|
49 |
48
|
imp |
|
50 |
40 21 41 49
|
syl12anc |
|
51 |
20
|
adantr |
|
52 |
|
feq3 |
|
53 |
52
|
adantl |
|
54 |
51 53
|
mpbid |
|
55 |
|
f00 |
|
56 |
54 55
|
sylib |
|
57 |
56
|
simprd |
|
58 |
56
|
simpld |
|
59 |
|
simpr |
|
60 |
8
|
biimpri |
|
61 |
60 7
|
imbitrrid |
|
62 |
61
|
imp |
|
63 |
57 58 59 62
|
syl12anc |
|
64 |
50 63
|
jaodan |
|
65 |
16 64
|
sylan2b |
|
66 |
65
|
ex |
|
67 |
66
|
ralimdvva |
|
68 |
67
|
imp |
|
69 |
15 68 6
|
sylanbrc |
|
70 |
14 69
|
impbida |
|
71 |
4 5 70
|
syl2anc |
|