Metamath Proof Explorer


Theorem fun2

Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Assertion fun2 F : A C G : B C A B = F G : A B C

Proof

Step Hyp Ref Expression
1 fun F : A C G : B C A B = F G : A B C C
2 unidm C C = C
3 feq3 C C = C F G : A B C C F G : A B C
4 2 3 ax-mp F G : A B C C F G : A B C
5 1 4 sylib F : A C G : B C A B = F G : A B C