Metamath Proof Explorer


Theorem fun2cnv

Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of TakeutiZaring p. 23, who use the notation "Un(A)" for single-valued. Note that A is not necessarily a function. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion fun2cnv Fun A -1 -1 x * y x A y

Proof

Step Hyp Ref Expression
1 funcnv2 Fun A -1 -1 x * y y A -1 x
2 vex y V
3 vex x V
4 2 3 brcnv y A -1 x x A y
5 4 mobii * y y A -1 x * y x A y
6 5 albii x * y y A -1 x x * y x A y
7 1 6 bitri Fun A -1 -1 x * y x A y