Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fun2d
Metamath Proof Explorer
Description: The union of functions with disjoint domains is a function, deduction
version of fun2 . (Contributed by AV , 11-Oct-2020) (Revised by AV , 24-Oct-2021)
Ref
Expression
Hypotheses
fun2d.f
⊢ φ → F : A ⟶ C
fun2d.g
⊢ φ → G : B ⟶ C
fun2d.i
⊢ φ → A ∩ B = ∅
Assertion
fun2d
⊢ φ → F ∪ G : A ∪ B ⟶ C
Proof
Step
Hyp
Ref
Expression
1
fun2d.f
⊢ φ → F : A ⟶ C
2
fun2d.g
⊢ φ → G : B ⟶ C
3
fun2d.i
⊢ φ → A ∩ B = ∅
4
fun2
⊢ F : A ⟶ C ∧ G : B ⟶ C ∧ A ∩ B = ∅ → F ∪ G : A ∪ B ⟶ C
5
1 2 3 4
syl21anc
⊢ φ → F ∪ G : A ∪ B ⟶ C