Metamath Proof Explorer


Theorem fun2d

Description: The union of functions with disjoint domains is a function, deduction version of fun2 . (Contributed by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses fun2d.f φ F : A C
fun2d.g φ G : B C
fun2d.i φ A B =
Assertion fun2d φ F G : A B C

Proof

Step Hyp Ref Expression
1 fun2d.f φ F : A C
2 fun2d.g φ G : B C
3 fun2d.i φ A B =
4 fun2 F : A C G : B C A B = F G : A B C
5 1 2 3 4 syl21anc φ F G : A B C