Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
Functions with a domain containing at least two different elements
fun2dmnop
Metamath Proof Explorer
Description: A function with a domain containing (at least) two different elements is
not an ordered pair. (Contributed by AV , 21-Sep-2020) (Proof
shortened by AV , 9-Jun-2021)
Ref
Expression
Hypotheses
fun2dmnop.a
⊢ A ∈ V
fun2dmnop.b
⊢ B ∈ V
Assertion
fun2dmnop
⊢ Fun ⁡ G ∧ A ≠ B ∧ A B ⊆ dom ⁡ G → ¬ G ∈ V × V
Proof
Step
Hyp
Ref
Expression
1
fun2dmnop.a
⊢ A ∈ V
2
fun2dmnop.b
⊢ B ∈ V
3
fundif
⊢ Fun ⁡ G → Fun ⁡ G ∖ ∅
4
1 2
fun2dmnop0
⊢ Fun ⁡ G ∖ ∅ ∧ A ≠ B ∧ A B ⊆ dom ⁡ G → ¬ G ∈ V × V
5
3 4
syl3an1
⊢ Fun ⁡ G ∧ A ≠ B ∧ A B ⊆ dom ⁡ G → ¬ G ∈ V × V