Metamath Proof Explorer


Theorem fun2dmnop

Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020) (Proof shortened by AV, 9-Jun-2021)

Ref Expression
Hypotheses fun2dmnop.a A V
fun2dmnop.b B V
Assertion fun2dmnop Fun G A B A B dom G ¬ G V × V

Proof

Step Hyp Ref Expression
1 fun2dmnop.a A V
2 fun2dmnop.b B V
3 fundif Fun G Fun G
4 1 2 fun2dmnop0 Fun G A B A B dom G ¬ G V × V
5 3 4 syl3an1 Fun G A B A B dom G ¬ G V × V