Metamath Proof Explorer


Theorem fun2dmnop0

Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 21-Sep-2020) (Revised by AV, 7-Jun-2021)

Ref Expression
Hypotheses fun2dmnop.a A V
fun2dmnop.b B V
Assertion fun2dmnop0 Fun G A B A B dom G ¬ G V × V

Proof

Step Hyp Ref Expression
1 fun2dmnop.a A V
2 fun2dmnop.b B V
3 simpl1 Fun G A B A B dom G G V Fun G
4 dmexg G V dom G V
5 4 adantl Fun G A B A B dom G G V dom G V
6 1 2 prss A dom G B dom G A B dom G
7 simpl A dom G B dom G A dom G
8 6 7 sylbir A B dom G A dom G
9 8 3ad2ant3 Fun G A B A B dom G A dom G
10 9 adantr Fun G A B A B dom G G V A dom G
11 simpr A dom G B dom G B dom G
12 6 11 sylbir A B dom G B dom G
13 12 3ad2ant3 Fun G A B A B dom G B dom G
14 13 adantr Fun G A B A B dom G G V B dom G
15 simpl2 Fun G A B A B dom G G V A B
16 5 10 14 15 nehash2 Fun G A B A B dom G G V 2 dom G
17 fundmge2nop0 Fun G 2 dom G ¬ G V × V
18 3 16 17 syl2anc Fun G A B A B dom G G V ¬ G V × V
19 18 ex Fun G A B A B dom G G V ¬ G V × V
20 prcnel ¬ G V ¬ G V × V
21 19 20 pm2.61d1 Fun G A B A B dom G ¬ G V × V