Metamath Proof Explorer


Theorem fun2ssres

Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994)

Ref Expression
Assertion fun2ssres Fun F G F A dom G F A = G A

Proof

Step Hyp Ref Expression
1 resabs1 A dom G F dom G A = F A
2 1 eqcomd A dom G F A = F dom G A
3 funssres Fun F G F F dom G = G
4 3 reseq1d Fun F G F F dom G A = G A
5 2 4 sylan9eqr Fun F G F A dom G F A = G A
6 5 3impa Fun F G F A dom G F A = G A