Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fun2ssres
Next ⟩
funun
Metamath Proof Explorer
Ascii
Unicode
Theorem
fun2ssres
Description:
Equality of restrictions of a function and a subclass.
(Contributed by
NM
, 16-Aug-1994)
Ref
Expression
Assertion
fun2ssres
⊢
Fun
⁡
F
∧
G
⊆
F
∧
A
⊆
dom
⁡
G
→
F
↾
A
=
G
↾
A
Proof
Step
Hyp
Ref
Expression
1
resabs1
⊢
A
⊆
dom
⁡
G
→
F
↾
dom
⁡
G
↾
A
=
F
↾
A
2
1
eqcomd
⊢
A
⊆
dom
⁡
G
→
F
↾
A
=
F
↾
dom
⁡
G
↾
A
3
funssres
⊢
Fun
⁡
F
∧
G
⊆
F
→
F
↾
dom
⁡
G
=
G
4
3
reseq1d
⊢
Fun
⁡
F
∧
G
⊆
F
→
F
↾
dom
⁡
G
↾
A
=
G
↾
A
5
2
4
sylan9eqr
⊢
Fun
⁡
F
∧
G
⊆
F
∧
A
⊆
dom
⁡
G
→
F
↾
A
=
G
↾
A
6
5
3impa
⊢
Fun
⁡
F
∧
G
⊆
F
∧
A
⊆
dom
⁡
G
→
F
↾
A
=
G
↾
A