Metamath Proof Explorer


Theorem funbrfv

Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion funbrfv Fun F A F B F A = B

Proof

Step Hyp Ref Expression
1 funrel Fun F Rel F
2 brrelex2 Rel F A F B B V
3 1 2 sylan Fun F A F B B V
4 breq2 y = B A F y A F B
5 4 anbi2d y = B Fun F A F y Fun F A F B
6 eqeq2 y = B F A = y F A = B
7 5 6 imbi12d y = B Fun F A F y F A = y Fun F A F B F A = B
8 funeu Fun F A F y ∃! y A F y
9 tz6.12-1 A F y ∃! y A F y F A = y
10 8 9 sylan2 A F y Fun F A F y F A = y
11 10 anabss7 Fun F A F y F A = y
12 7 11 vtoclg B V Fun F A F B F A = B
13 3 12 mpcom Fun F A F B F A = B
14 13 ex Fun F A F B F A = B