Metamath Proof Explorer


Theorem funbrfv2b

Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion funbrfv2b Fun F A F B A dom F F A = B

Proof

Step Hyp Ref Expression
1 funrel Fun F Rel F
2 releldm Rel F A F B A dom F
3 2 ex Rel F A F B A dom F
4 1 3 syl Fun F A F B A dom F
5 4 pm4.71rd Fun F A F B A dom F A F B
6 funbrfvb Fun F A dom F F A = B A F B
7 6 pm5.32da Fun F A dom F F A = B A dom F A F B
8 5 7 bitr4d Fun F A F B A dom F F A = B