Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funbrfvb
Next ⟩
funopfvb
Metamath Proof Explorer
Ascii
Unicode
Theorem
funbrfvb
Description:
Equivalence of function value and binary relation.
(Contributed by
NM
, 26-Mar-2006)
Ref
Expression
Assertion
funbrfvb
⊢
Fun
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
=
B
↔
A
F
B
Proof
Step
Hyp
Ref
Expression
1
funfn
⊢
Fun
⁡
F
↔
F
Fn
dom
⁡
F
2
fnbrfvb
⊢
F
Fn
dom
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
=
B
↔
A
F
B
3
1
2
sylanb
⊢
Fun
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
=
B
↔
A
F
B