Metamath Proof Explorer


Theorem funbrfvb

Description: Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006)

Ref Expression
Assertion funbrfvb Fun F A dom F F A = B A F B

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 fnbrfvb F Fn dom F A dom F F A = B A F B
3 1 2 sylanb Fun F A dom F F A = B A F B