| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcco.b |
|
| 2 |
|
funcco.h |
|
| 3 |
|
funcco.o |
|
| 4 |
|
funcco.O |
|
| 5 |
|
funcco.f |
|
| 6 |
|
funcco.x |
|
| 7 |
|
funcco.y |
|
| 8 |
|
funcco.z |
|
| 9 |
|
funcco.m |
|
| 10 |
|
funcco.n |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
df-br |
|
| 16 |
5 15
|
sylib |
|
| 17 |
|
funcrcl |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
simpld |
|
| 20 |
18
|
simprd |
|
| 21 |
1 11 2 12 13 14 3 4 19 20
|
isfunc |
|
| 22 |
5 21
|
mpbid |
|
| 23 |
22
|
simp3d |
|
| 24 |
7
|
adantr |
|
| 25 |
8
|
ad2antrr |
|
| 26 |
9
|
ad3antrrr |
|
| 27 |
|
simpllr |
|
| 28 |
|
simplr |
|
| 29 |
27 28
|
oveq12d |
|
| 30 |
26 29
|
eleqtrrd |
|
| 31 |
10
|
ad4antr |
|
| 32 |
|
simpllr |
|
| 33 |
|
simplr |
|
| 34 |
32 33
|
oveq12d |
|
| 35 |
31 34
|
eleqtrrd |
|
| 36 |
|
simp-5r |
|
| 37 |
|
simpllr |
|
| 38 |
36 37
|
oveq12d |
|
| 39 |
|
simp-4r |
|
| 40 |
36 39
|
opeq12d |
|
| 41 |
40 37
|
oveq12d |
|
| 42 |
|
simpr |
|
| 43 |
|
simplr |
|
| 44 |
41 42 43
|
oveq123d |
|
| 45 |
38 44
|
fveq12d |
|
| 46 |
36
|
fveq2d |
|
| 47 |
39
|
fveq2d |
|
| 48 |
46 47
|
opeq12d |
|
| 49 |
37
|
fveq2d |
|
| 50 |
48 49
|
oveq12d |
|
| 51 |
39 37
|
oveq12d |
|
| 52 |
51 42
|
fveq12d |
|
| 53 |
36 39
|
oveq12d |
|
| 54 |
53 43
|
fveq12d |
|
| 55 |
50 52 54
|
oveq123d |
|
| 56 |
45 55
|
eqeq12d |
|
| 57 |
35 56
|
rspcdv |
|
| 58 |
30 57
|
rspcimdv |
|
| 59 |
25 58
|
rspcimdv |
|
| 60 |
24 59
|
rspcimdv |
|
| 61 |
60
|
adantld |
|
| 62 |
6 61
|
rspcimdv |
|
| 63 |
23 62
|
mpd |
|