Step |
Hyp |
Ref |
Expression |
1 |
|
funcco.b |
|
2 |
|
funcco.h |
|
3 |
|
funcco.o |
|
4 |
|
funcco.O |
|
5 |
|
funcco.f |
|
6 |
|
funcco.x |
|
7 |
|
funcco.y |
|
8 |
|
funcco.z |
|
9 |
|
funcco.m |
|
10 |
|
funcco.n |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
df-br |
|
16 |
5 15
|
sylib |
|
17 |
|
funcrcl |
|
18 |
16 17
|
syl |
|
19 |
18
|
simpld |
|
20 |
18
|
simprd |
|
21 |
1 11 2 12 13 14 3 4 19 20
|
isfunc |
|
22 |
5 21
|
mpbid |
|
23 |
22
|
simp3d |
|
24 |
7
|
adantr |
|
25 |
8
|
ad2antrr |
|
26 |
9
|
ad3antrrr |
|
27 |
|
simpllr |
|
28 |
|
simplr |
|
29 |
27 28
|
oveq12d |
|
30 |
26 29
|
eleqtrrd |
|
31 |
10
|
ad4antr |
|
32 |
|
simpllr |
|
33 |
|
simplr |
|
34 |
32 33
|
oveq12d |
|
35 |
31 34
|
eleqtrrd |
|
36 |
|
simp-5r |
|
37 |
|
simpllr |
|
38 |
36 37
|
oveq12d |
|
39 |
|
simp-4r |
|
40 |
36 39
|
opeq12d |
|
41 |
40 37
|
oveq12d |
|
42 |
|
simpr |
|
43 |
|
simplr |
|
44 |
41 42 43
|
oveq123d |
|
45 |
38 44
|
fveq12d |
|
46 |
36
|
fveq2d |
|
47 |
39
|
fveq2d |
|
48 |
46 47
|
opeq12d |
|
49 |
37
|
fveq2d |
|
50 |
48 49
|
oveq12d |
|
51 |
39 37
|
oveq12d |
|
52 |
51 42
|
fveq12d |
|
53 |
36 39
|
oveq12d |
|
54 |
53 43
|
fveq12d |
|
55 |
50 52 54
|
oveq123d |
|
56 |
45 55
|
eqeq12d |
|
57 |
35 56
|
rspcdv |
|
58 |
30 57
|
rspcimdv |
|
59 |
25 58
|
rspcimdv |
|
60 |
24 59
|
rspcimdv |
|
61 |
60
|
adantld |
|
62 |
6 61
|
rspcimdv |
|
63 |
23 62
|
mpd |
|