Metamath Proof Explorer


Theorem funcfn2

Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses funcfn2.b B = Base D
funcfn2.f φ F D Func E G
Assertion funcfn2 φ G Fn B × B

Proof

Step Hyp Ref Expression
1 funcfn2.b B = Base D
2 funcfn2.f φ F D Func E G
3 eqid Hom D = Hom D
4 eqid Hom E = Hom E
5 1 3 4 2 funcixp φ G x B × B F 1 st x Hom E F 2 nd x Hom D x
6 ixpfn G x B × B F 1 st x Hom E F 2 nd x Hom D x G Fn B × B
7 5 6 syl φ G Fn B × B