Metamath Proof Explorer


Theorem funciso

Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of Adamek p. 32. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses funciso.b B = Base D
funciso.s I = Iso D
funciso.t J = Iso E
funciso.f φ F D Func E G
funciso.x φ X B
funciso.y φ Y B
funciso.m φ M X I Y
Assertion funciso φ X G Y M F X J F Y

Proof

Step Hyp Ref Expression
1 funciso.b B = Base D
2 funciso.s I = Iso D
3 funciso.t J = Iso E
4 funciso.f φ F D Func E G
5 funciso.x φ X B
6 funciso.y φ Y B
7 funciso.m φ M X I Y
8 eqid Base E = Base E
9 eqid Inv E = Inv E
10 df-br F D Func E G F G D Func E
11 4 10 sylib φ F G D Func E
12 funcrcl F G D Func E D Cat E Cat
13 11 12 syl φ D Cat E Cat
14 13 simprd φ E Cat
15 1 8 4 funcf1 φ F : B Base E
16 15 5 ffvelrnd φ F X Base E
17 15 6 ffvelrnd φ F Y Base E
18 eqid Inv D = Inv D
19 13 simpld φ D Cat
20 1 2 18 19 5 6 7 invisoinvr φ M X Inv D Y X Inv D Y M
21 1 18 9 4 5 6 20 funcinv φ X G Y M F X Inv E F Y Y G X X Inv D Y M
22 8 9 14 16 17 3 21 inviso1 φ X G Y M F X J F Y