Metamath Proof Explorer


Theorem funcixp

Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses funcixp.b B = Base D
funcixp.h H = Hom D
funcixp.j J = Hom E
funcixp.f φ F D Func E G
Assertion funcixp φ G z B × B F 1 st z J F 2 nd z H z

Proof

Step Hyp Ref Expression
1 funcixp.b B = Base D
2 funcixp.h H = Hom D
3 funcixp.j J = Hom E
4 funcixp.f φ F D Func E G
5 eqid Base E = Base E
6 eqid Id D = Id D
7 eqid Id E = Id E
8 eqid comp D = comp D
9 eqid comp E = comp E
10 df-br F D Func E G F G D Func E
11 4 10 sylib φ F G D Func E
12 funcrcl F G D Func E D Cat E Cat
13 11 12 syl φ D Cat E Cat
14 13 simpld φ D Cat
15 13 simprd φ E Cat
16 1 5 2 3 6 7 8 9 14 15 isfunc φ F D Func E G F : B Base E G z B × B F 1 st z J F 2 nd z H z x B x G x Id D x = Id E F x y B z B m x H y n y H z x G z n x y comp D z m = y G z n F x F y comp E F z x G y m
17 4 16 mpbid φ F : B Base E G z B × B F 1 st z J F 2 nd z H z x B x G x Id D x = Id E F x y B z B m x H y n y H z x G z n x y comp D z m = y G z n F x F y comp E F z x G y m
18 17 simp2d φ G z B × B F 1 st z J F 2 nd z H z