Metamath Proof Explorer


Theorem funcnv

Description: The converse of a class is a function iff the class is single-rooted, which means that for any y in the range of A there is at most one x such that x A y . Definition of single-rooted in Enderton p. 43. See funcnv2 for a simpler version. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion funcnv Fun A -1 y ran A * x x A y

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 brelrn x A y y ran A
4 3 pm4.71ri x A y y ran A x A y
5 4 mobii * x x A y * x y ran A x A y
6 moanimv * x y ran A x A y y ran A * x x A y
7 5 6 bitri * x x A y y ran A * x x A y
8 7 albii y * x x A y y y ran A * x x A y
9 funcnv2 Fun A -1 y * x x A y
10 df-ral y ran A * x x A y y y ran A * x x A y
11 8 9 10 3bitr4i Fun A -1 y ran A * x x A y