Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funcnv0
Next ⟩
funcnvcnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcnv0
Description:
The converse of the empty set is a function.
(Contributed by
AV
, 7-Jan-2021)
Ref
Expression
Assertion
funcnv0
⊢
Fun
⁡
∅
-1
Proof
Step
Hyp
Ref
Expression
1
fun0
⊢
Fun
⁡
∅
2
cnv0
⊢
∅
-1
=
∅
3
2
funeqi
⊢
Fun
⁡
∅
-1
↔
Fun
⁡
∅
4
1
3
mpbir
⊢
Fun
⁡
∅
-1