Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funcnv2
Next ⟩
funcnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcnv2
Description:
A simpler equivalence for single-rooted (see
funcnv
).
(Contributed by
NM
, 9-Aug-2004)
Ref
Expression
Assertion
funcnv2
⊢
Fun
⁡
A
-1
↔
∀
y
∃
*
x
x
A
y
Proof
Step
Hyp
Ref
Expression
1
relcnv
⊢
Rel
⁡
A
-1
2
dffun6
⊢
Fun
⁡
A
-1
↔
Rel
⁡
A
-1
∧
∀
y
∃
*
x
y
A
-1
x
3
1
2
mpbiran
⊢
Fun
⁡
A
-1
↔
∀
y
∃
*
x
y
A
-1
x
4
vex
⊢
y
∈
V
5
vex
⊢
x
∈
V
6
4
5
brcnv
⊢
y
A
-1
x
↔
x
A
y
7
6
mobii
⊢
∃
*
x
y
A
-1
x
↔
∃
*
x
x
A
y
8
7
albii
⊢
∀
y
∃
*
x
y
A
-1
x
↔
∀
y
∃
*
x
x
A
y
9
3
8
bitri
⊢
Fun
⁡
A
-1
↔
∀
y
∃
*
x
x
A
y