Metamath Proof Explorer


Theorem funcnv2

Description: A simpler equivalence for single-rooted (see funcnv ). (Contributed by NM, 9-Aug-2004)

Ref Expression
Assertion funcnv2 Fun A -1 y * x x A y

Proof

Step Hyp Ref Expression
1 relcnv Rel A -1
2 dffun6 Fun A -1 Rel A -1 y * x y A -1 x
3 1 2 mpbiran Fun A -1 y * x y A -1 x
4 vex y V
5 vex x V
6 4 5 brcnv y A -1 x x A y
7 6 mobii * x y A -1 x * x x A y
8 7 albii y * x y A -1 x y * x x A y
9 3 8 bitri Fun A -1 y * x x A y