Metamath Proof Explorer


Theorem funcnvqp

Description: The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021) (Proof shortened by JJ, 14-Jul-2021)

Ref Expression
Assertion funcnvqp A U C V E W G T B D B F B H D F D H F H Fun A B C D E F G H -1

Proof

Step Hyp Ref Expression
1 funcnvpr A U C V B D Fun A B C D -1
2 1 3expa A U C V B D Fun A B C D -1
3 2 3ad2antr1 A U C V B D B F B H Fun A B C D -1
4 3 ad2ant2r A U C V E W G T B D B F B H F H Fun A B C D -1
5 4 3adantr2 A U C V E W G T B D B F B H D F D H F H Fun A B C D -1
6 funcnvpr E W G T F H Fun E F G H -1
7 6 3expa E W G T F H Fun E F G H -1
8 7 ad2ant2l A U C V E W G T B D B F B H F H Fun E F G H -1
9 8 3adantr2 A U C V E W G T B D B F B H D F D H F H Fun E F G H -1
10 df-rn ran A B C D = dom A B C D -1
11 rnpropg A U C V ran A B C D = B D
12 10 11 eqtr3id A U C V dom A B C D -1 = B D
13 df-rn ran E F G H = dom E F G H -1
14 rnpropg E W G T ran E F G H = F H
15 13 14 eqtr3id E W G T dom E F G H -1 = F H
16 12 15 ineqan12d A U C V E W G T dom A B C D -1 dom E F G H -1 = B D F H
17 disjpr2 B F D F B H D H B D F H =
18 17 an4s B F B H D F D H B D F H =
19 18 3adantl1 B D B F B H D F D H B D F H =
20 19 3adant3 B D B F B H D F D H F H B D F H =
21 16 20 sylan9eq A U C V E W G T B D B F B H D F D H F H dom A B C D -1 dom E F G H -1 =
22 funun Fun A B C D -1 Fun E F G H -1 dom A B C D -1 dom E F G H -1 = Fun A B C D -1 E F G H -1
23 5 9 21 22 syl21anc A U C V E W G T B D B F B H D F D H F H Fun A B C D -1 E F G H -1
24 cnvun A B C D E F G H -1 = A B C D -1 E F G H -1
25 24 funeqi Fun A B C D E F G H -1 Fun A B C D -1 E F G H -1
26 23 25 sylibr A U C V E W G T B D B F B H D F D H F H Fun A B C D E F G H -1