Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funcnvres
Next ⟩
cnvresid
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcnvres
Description:
The converse of a restricted function.
(Contributed by
NM
, 27-Mar-1998)
Ref
Expression
Assertion
funcnvres
⊢
Fun
⁡
F
-1
→
F
↾
A
-1
=
F
-1
↾
F
A
Proof
Step
Hyp
Ref
Expression
1
df-ima
⊢
F
A
=
ran
⁡
F
↾
A
2
df-rn
⊢
ran
⁡
F
↾
A
=
dom
⁡
F
↾
A
-1
3
1
2
eqtri
⊢
F
A
=
dom
⁡
F
↾
A
-1
4
3
reseq2i
⊢
F
-1
↾
F
A
=
F
-1
↾
dom
⁡
F
↾
A
-1
5
resss
⊢
F
↾
A
⊆
F
6
cnvss
⊢
F
↾
A
⊆
F
→
F
↾
A
-1
⊆
F
-1
7
5
6
ax-mp
⊢
F
↾
A
-1
⊆
F
-1
8
funssres
⊢
Fun
⁡
F
-1
∧
F
↾
A
-1
⊆
F
-1
→
F
-1
↾
dom
⁡
F
↾
A
-1
=
F
↾
A
-1
9
7
8
mpan2
⊢
Fun
⁡
F
-1
→
F
-1
↾
dom
⁡
F
↾
A
-1
=
F
↾
A
-1
10
4
9
eqtr2id
⊢
Fun
⁡
F
-1
→
F
↾
A
-1
=
F
-1
↾
F
A