Metamath Proof Explorer


Theorem funcnvres2

Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005)

Ref Expression
Assertion funcnvres2 Fun F F -1 A -1 = F F -1 A

Proof

Step Hyp Ref Expression
1 funcnvcnv Fun F Fun F -1 -1
2 funcnvres Fun F -1 -1 F -1 A -1 = F -1 -1 F -1 A
3 1 2 syl Fun F F -1 A -1 = F -1 -1 F -1 A
4 funrel Fun F Rel F
5 dfrel2 Rel F F -1 -1 = F
6 4 5 sylib Fun F F -1 -1 = F
7 6 reseq1d Fun F F -1 -1 F -1 A = F F -1 A
8 3 7 eqtrd Fun F F -1 A -1 = F F -1 A