Metamath Proof Explorer


Theorem funcnvs1

Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021)

Ref Expression
Assertion funcnvs1 Fun ⟨“ A ”⟩ -1

Proof

Step Hyp Ref Expression
1 funcnvsn Fun 0 I A -1
2 df-s1 ⟨“ A ”⟩ = 0 I A
3 2 cnveqi ⟨“ A ”⟩ -1 = 0 I A -1
4 3 funeqi Fun ⟨“ A ”⟩ -1 Fun 0 I A -1
5 1 4 mpbir Fun ⟨“ A ”⟩ -1