Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
funcnvs1
Next ⟩
funcnvs2
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcnvs1
Description:
The converse of a singleton word is a function.
(Contributed by
AV
, 22-Jan-2021)
Ref
Expression
Assertion
funcnvs1
⊢
Fun
⁡
〈“
A
”〉
-1
Proof
Step
Hyp
Ref
Expression
1
funcnvsn
⊢
Fun
⁡
0
I
⁡
A
-1
2
df-s1
⊢
〈“
A
”〉
=
0
I
⁡
A
3
2
cnveqi
⊢
〈“
A
”〉
-1
=
0
I
⁡
A
-1
4
3
funeqi
⊢
Fun
⁡
〈“
A
”〉
-1
↔
Fun
⁡
0
I
⁡
A
-1
5
1
4
mpbir
⊢
Fun
⁡
〈“
A
”〉
-1