Metamath Proof Explorer


Theorem funcnvs2

Description: The converse of a length 2 word is a function if its symbols are different sets. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion funcnvs2 A V B V A B Fun ⟨“ AB ”⟩ -1

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1ex 1 V
3 simp3 A V B V A B A B
4 funcnvpr 0 V 1 V A B Fun 0 A 1 B -1
5 1 2 3 4 mp3an12i A V B V A B Fun 0 A 1 B -1
6 s2prop A V B V ⟨“ AB ”⟩ = 0 A 1 B
7 6 3adant3 A V B V A B ⟨“ AB ”⟩ = 0 A 1 B
8 7 cnveqd A V B V A B ⟨“ AB ”⟩ -1 = 0 A 1 B -1
9 8 funeqd A V B V A B Fun ⟨“ AB ”⟩ -1 Fun 0 A 1 B -1
10 5 9 mpbird A V B V A B Fun ⟨“ AB ”⟩ -1