Metamath Proof Explorer


Theorem funcnvs3

Description: The converse of a length 3 word is a function if its symbols are different sets. (Contributed by Alexander van der Vekens, 31-Jan-2018) (Revised by AV, 23-Jan-2021)

Ref Expression
Assertion funcnvs3 A V B V C V A B A C B C Fun ⟨“ ABC ”⟩ -1

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1ex 1 V
3 2ex 2 V
4 1 2 3 3pm3.2i 0 V 1 V 2 V
5 4 a1i A V B V C V 0 V 1 V 2 V
6 funcnvtp 0 V 1 V 2 V A B A C B C Fun 0 A 1 B 2 C -1
7 5 6 sylan A V B V C V A B A C B C Fun 0 A 1 B 2 C -1
8 s3tpop A V B V C V ⟨“ ABC ”⟩ = 0 A 1 B 2 C
9 8 adantr A V B V C V A B A C B C ⟨“ ABC ”⟩ = 0 A 1 B 2 C
10 9 cnveqd A V B V C V A B A C B C ⟨“ ABC ”⟩ -1 = 0 A 1 B 2 C -1
11 10 funeqd A V B V C V A B A C B C Fun ⟨“ ABC ”⟩ -1 Fun 0 A 1 B 2 C -1
12 7 11 mpbird A V B V C V A B A C B C Fun ⟨“ ABC ”⟩ -1