Metamath Proof Explorer


Theorem funcnvs4

Description: The converse of a length 4 word is a function if its symbols are different sets. (Contributed by AV, 10-Feb-2021)

Ref Expression
Assertion funcnvs4 A V B V C V D V A B A C A D B C B D C D Fun ⟨“ ABCD ”⟩ -1

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1ex 1 V
3 1 2 pm3.2i 0 V 1 V
4 2ex 2 V
5 3ex 3 V
6 4 5 pm3.2i 2 V 3 V
7 3 6 pm3.2i 0 V 1 V 2 V 3 V
8 7 a1i A V B V C V D V 0 V 1 V 2 V 3 V
9 funcnvqp 0 V 1 V 2 V 3 V A B A C A D B C B D C D Fun 0 A 1 B 2 C 3 D -1
10 8 9 sylan A V B V C V D V A B A C A D B C B D C D Fun 0 A 1 B 2 C 3 D -1
11 s4prop A V B V C V D V ⟨“ ABCD ”⟩ = 0 A 1 B 2 C 3 D
12 11 adantr A V B V C V D V A B A C A D B C B D C D ⟨“ ABCD ”⟩ = 0 A 1 B 2 C 3 D
13 12 cnveqd A V B V C V D V A B A C A D B C B D C D ⟨“ ABCD ”⟩ -1 = 0 A 1 B 2 C 3 D -1
14 13 funeqd A V B V C V D V A B A C A D B C B D C D Fun ⟨“ ABCD ”⟩ -1 Fun 0 A 1 B 2 C 3 D -1
15 10 14 mpbird A V B V C V D V A B A C A D B C B D C D Fun ⟨“ ABCD ”⟩ -1