Metamath Proof Explorer


Theorem funcnvsn

Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn via cnvsn , but stating it this way allows us to skip the sethood assumptions on A and B . (Contributed by NM, 30-Apr-2015)

Ref Expression
Assertion funcnvsn Fun A B -1

Proof

Step Hyp Ref Expression
1 relcnv Rel A B -1
2 moeq * y y = A
3 vex x V
4 vex y V
5 3 4 brcnv x A B -1 y y A B x
6 df-br y A B x y x A B
7 5 6 bitri x A B -1 y y x A B
8 elsni y x A B y x = A B
9 4 3 opth1 y x = A B y = A
10 8 9 syl y x A B y = A
11 7 10 sylbi x A B -1 y y = A
12 11 moimi * y y = A * y x A B -1 y
13 2 12 ax-mp * y x A B -1 y
14 13 ax-gen x * y x A B -1 y
15 dffun6 Fun A B -1 Rel A B -1 x * y x A B -1 y
16 1 14 15 mpbir2an Fun A B -1