Metamath Proof Explorer


Theorem funcnvuni

Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion funcnvuni f A Fun f -1 g A f g g f Fun A -1

Proof

Step Hyp Ref Expression
1 cnveq x = v x -1 = v -1
2 1 eqeq2d x = v z = x -1 z = v -1
3 2 cbvrexvw x A z = x -1 v A z = v -1
4 cnveq f = v f -1 = v -1
5 4 funeqd f = v Fun f -1 Fun v -1
6 sseq1 f = v f g v g
7 sseq2 f = v g f g v
8 6 7 orbi12d f = v f g g f v g g v
9 8 ralbidv f = v g A f g g f g A v g g v
10 5 9 anbi12d f = v Fun f -1 g A f g g f Fun v -1 g A v g g v
11 10 rspcv v A f A Fun f -1 g A f g g f Fun v -1 g A v g g v
12 funeq z = v -1 Fun z Fun v -1
13 12 biimprcd Fun v -1 z = v -1 Fun z
14 sseq2 g = x v g v x
15 sseq1 g = x g v x v
16 14 15 orbi12d g = x v g g v v x x v
17 16 rspcv x A g A v g g v v x x v
18 cnvss v x v -1 x -1
19 cnvss x v x -1 v -1
20 18 19 orim12i v x x v v -1 x -1 x -1 v -1
21 sseq12 z = v -1 w = x -1 z w v -1 x -1
22 21 ancoms w = x -1 z = v -1 z w v -1 x -1
23 sseq12 w = x -1 z = v -1 w z x -1 v -1
24 22 23 orbi12d w = x -1 z = v -1 z w w z v -1 x -1 x -1 v -1
25 20 24 syl5ibrcom v x x v w = x -1 z = v -1 z w w z
26 25 expd v x x v w = x -1 z = v -1 z w w z
27 17 26 syl6com g A v g g v x A w = x -1 z = v -1 z w w z
28 27 rexlimdv g A v g g v x A w = x -1 z = v -1 z w w z
29 28 com23 g A v g g v z = v -1 x A w = x -1 z w w z
30 29 alrimdv g A v g g v z = v -1 w x A w = x -1 z w w z
31 13 30 anim12ii Fun v -1 g A v g g v z = v -1 Fun z w x A w = x -1 z w w z
32 11 31 syl6com f A Fun f -1 g A f g g f v A z = v -1 Fun z w x A w = x -1 z w w z
33 32 rexlimdv f A Fun f -1 g A f g g f v A z = v -1 Fun z w x A w = x -1 z w w z
34 3 33 syl5bi f A Fun f -1 g A f g g f x A z = x -1 Fun z w x A w = x -1 z w w z
35 34 alrimiv f A Fun f -1 g A f g g f z x A z = x -1 Fun z w x A w = x -1 z w w z
36 df-ral z y | x A y = x -1 Fun z w y | x A y = x -1 z w w z z z y | x A y = x -1 Fun z w y | x A y = x -1 z w w z
37 vex z V
38 eqeq1 y = z y = x -1 z = x -1
39 38 rexbidv y = z x A y = x -1 x A z = x -1
40 37 39 elab z y | x A y = x -1 x A z = x -1
41 eqeq1 y = w y = x -1 w = x -1
42 41 rexbidv y = w x A y = x -1 x A w = x -1
43 42 ralab w y | x A y = x -1 z w w z w x A w = x -1 z w w z
44 43 anbi2i Fun z w y | x A y = x -1 z w w z Fun z w x A w = x -1 z w w z
45 40 44 imbi12i z y | x A y = x -1 Fun z w y | x A y = x -1 z w w z x A z = x -1 Fun z w x A w = x -1 z w w z
46 45 albii z z y | x A y = x -1 Fun z w y | x A y = x -1 z w w z z x A z = x -1 Fun z w x A w = x -1 z w w z
47 36 46 bitr2i z x A z = x -1 Fun z w x A w = x -1 z w w z z y | x A y = x -1 Fun z w y | x A y = x -1 z w w z
48 35 47 sylib f A Fun f -1 g A f g g f z y | x A y = x -1 Fun z w y | x A y = x -1 z w w z
49 fununi z y | x A y = x -1 Fun z w y | x A y = x -1 z w w z Fun y | x A y = x -1
50 48 49 syl f A Fun f -1 g A f g g f Fun y | x A y = x -1
51 cnvuni A -1 = x A x -1
52 vex x V
53 52 cnvex x -1 V
54 53 dfiun2 x A x -1 = y | x A y = x -1
55 51 54 eqtri A -1 = y | x A y = x -1
56 55 funeqi Fun A -1 Fun y | x A y = x -1
57 50 56 sylibr f A Fun f -1 g A f g g f Fun A -1