Metamath Proof Explorer


Theorem funcocnv2

Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion funcocnv2 Fun F F F -1 = I ran F

Proof

Step Hyp Ref Expression
1 df-fun Fun F Rel F F F -1 I
2 1 simprbi Fun F F F -1 I
3 iss F F -1 I F F -1 = I dom F F -1
4 dfdm4 dom F = ran F -1
5 dmcoeq dom F = ran F -1 dom F F -1 = dom F -1
6 4 5 ax-mp dom F F -1 = dom F -1
7 df-rn ran F = dom F -1
8 6 7 eqtr4i dom F F -1 = ran F
9 8 reseq2i I dom F F -1 = I ran F
10 9 eqeq2i F F -1 = I dom F F -1 F F -1 = I ran F
11 3 10 bitri F F -1 I F F -1 = I ran F
12 2 11 sylib Fun F F F -1 = I ran F