Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funcocnv2
Next ⟩
fococnv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcocnv2
Description:
Composition with the converse.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
funcocnv2
⊢
Fun
⁡
F
→
F
∘
F
-1
=
I
↾
ran
⁡
F
Proof
Step
Hyp
Ref
Expression
1
df-fun
⊢
Fun
⁡
F
↔
Rel
⁡
F
∧
F
∘
F
-1
⊆
I
2
1
simprbi
⊢
Fun
⁡
F
→
F
∘
F
-1
⊆
I
3
iss
⊢
F
∘
F
-1
⊆
I
↔
F
∘
F
-1
=
I
↾
dom
⁡
F
∘
F
-1
4
dfdm4
⊢
dom
⁡
F
=
ran
⁡
F
-1
5
dmcoeq
⊢
dom
⁡
F
=
ran
⁡
F
-1
→
dom
⁡
F
∘
F
-1
=
dom
⁡
F
-1
6
4
5
ax-mp
⊢
dom
⁡
F
∘
F
-1
=
dom
⁡
F
-1
7
df-rn
⊢
ran
⁡
F
=
dom
⁡
F
-1
8
6
7
eqtr4i
⊢
dom
⁡
F
∘
F
-1
=
ran
⁡
F
9
8
reseq2i
⊢
I
↾
dom
⁡
F
∘
F
-1
=
I
↾
ran
⁡
F
10
9
eqeq2i
⊢
F
∘
F
-1
=
I
↾
dom
⁡
F
∘
F
-1
↔
F
∘
F
-1
=
I
↾
ran
⁡
F
11
3
10
bitri
⊢
F
∘
F
-1
⊆
I
↔
F
∘
F
-1
=
I
↾
ran
⁡
F
12
2
11
sylib
⊢
Fun
⁡
F
→
F
∘
F
-1
=
I
↾
ran
⁡
F