Metamath Proof Explorer


Theorem funcofd

Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Hypotheses funcofd.1 φ Fun F
funcofd.2 φ Fun G
Assertion funcofd φ F G : G -1 dom F ran F

Proof

Step Hyp Ref Expression
1 funcofd.1 φ Fun F
2 funcofd.2 φ Fun G
3 fdmrn Fun F F : dom F ran F
4 1 3 sylib φ F : dom F ran F
5 fcof F : dom F ran F Fun G F G : G -1 dom F ran F
6 4 2 5 syl2anc φ F G : G -1 dom F ran F