Metamath Proof Explorer


Theorem funconstss

Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion funconstss Fun F A dom F x A F x = B A F -1 B

Proof

Step Hyp Ref Expression
1 funimass4 Fun F A dom F F A B x A F x B
2 fvex F x V
3 2 elsn F x B F x = B
4 3 ralbii x A F x B x A F x = B
5 1 4 bitr2di Fun F A dom F x A F x = B F A B
6 funimass3 Fun F A dom F F A B A F -1 B
7 5 6 bitrd Fun F A dom F x A F x = B A F -1 B