Step |
Hyp |
Ref |
Expression |
1 |
|
funcoppc.o |
|
2 |
|
funcoppc.p |
|
3 |
|
funcoppc.f |
|
4 |
|
eqid |
|
5 |
1 4
|
oppcbas |
|
6 |
|
eqid |
|
7 |
2 6
|
oppcbas |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
df-br |
|
15 |
3 14
|
sylib |
|
16 |
|
funcrcl |
|
17 |
15 16
|
syl |
|
18 |
17
|
simpld |
|
19 |
1
|
oppccat |
|
20 |
18 19
|
syl |
|
21 |
2
|
oppccat |
|
22 |
17 21
|
simpl2im |
|
23 |
4 6 3
|
funcf1 |
|
24 |
4 3
|
funcfn2 |
|
25 |
|
tposfn |
|
26 |
24 25
|
syl |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
3
|
adantr |
|
30 |
|
simprr |
|
31 |
|
simprl |
|
32 |
4 27 28 29 30 31
|
funcf2 |
|
33 |
|
ovtpos |
|
34 |
33
|
feq1i |
|
35 |
27 1
|
oppchom |
|
36 |
28 2
|
oppchom |
|
37 |
35 36
|
feq23i |
|
38 |
34 37
|
bitri |
|
39 |
32 38
|
sylibr |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
3
|
adantr |
|
43 |
|
simpr |
|
44 |
4 40 41 42 43
|
funcid |
|
45 |
|
ovtpos |
|
46 |
45
|
a1i |
|
47 |
1 40
|
oppcid |
|
48 |
18 47
|
syl |
|
49 |
48
|
adantr |
|
50 |
49
|
fveq1d |
|
51 |
46 50
|
fveq12d |
|
52 |
2 41
|
oppcid |
|
53 |
17 52
|
simpl2im |
|
54 |
53
|
adantr |
|
55 |
54
|
fveq1d |
|
56 |
44 51 55
|
3eqtr4d |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
3
|
3ad2ant1 |
|
60 |
|
simp23 |
|
61 |
|
simp22 |
|
62 |
|
simp21 |
|
63 |
|
simp3r |
|
64 |
27 1
|
oppchom |
|
65 |
63 64
|
eleqtrdi |
|
66 |
|
simp3l |
|
67 |
66 35
|
eleqtrdi |
|
68 |
4 27 57 58 59 60 61 62 65 67
|
funcco |
|
69 |
4 57 1 62 61 60
|
oppcco |
|
70 |
69
|
fveq2d |
|
71 |
23
|
3ad2ant1 |
|
72 |
71 62
|
ffvelrnd |
|
73 |
71 61
|
ffvelrnd |
|
74 |
71 60
|
ffvelrnd |
|
75 |
6 58 2 72 73 74
|
oppcco |
|
76 |
68 70 75
|
3eqtr4d |
|
77 |
|
ovtpos |
|
78 |
77
|
fveq1i |
|
79 |
|
ovtpos |
|
80 |
79
|
fveq1i |
|
81 |
33
|
fveq1i |
|
82 |
80 81
|
oveq12i |
|
83 |
76 78 82
|
3eqtr4g |
|
84 |
5 7 8 9 10 11 12 13 20 22 23 26 39 56 83
|
isfuncd |
|