Step |
Hyp |
Ref |
Expression |
1 |
|
funcpropd.1 |
|
2 |
|
funcpropd.2 |
|
3 |
|
funcpropd.3 |
|
4 |
|
funcpropd.4 |
|
5 |
|
funcpropd.a |
|
6 |
|
funcpropd.b |
|
7 |
|
funcpropd.c |
|
8 |
|
funcpropd.d |
|
9 |
|
relfunc |
|
10 |
|
relfunc |
|
11 |
1 2 5 6
|
catpropd |
|
12 |
3 4 7 8
|
catpropd |
|
13 |
11 12
|
anbi12d |
|
14 |
|
2fveq3 |
|
15 |
|
2fveq3 |
|
16 |
14 15
|
oveq12d |
|
17 |
|
fveq2 |
|
18 |
16 17
|
oveq12d |
|
19 |
18
|
cbvixpv |
|
20 |
19
|
eleq2i |
|
21 |
20
|
anbi2i |
|
22 |
1
|
ad2antrr |
|
23 |
2
|
ad2antrr |
|
24 |
5
|
ad2antrr |
|
25 |
6
|
ad2antrr |
|
26 |
22 23 24 25
|
cidpropd |
|
27 |
26
|
fveq1d |
|
28 |
27
|
fveq2d |
|
29 |
3 4 7 8
|
cidpropd |
|
30 |
29
|
ad2antrr |
|
31 |
30
|
fveq1d |
|
32 |
28 31
|
eqeq12d |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
1
|
ad6antr |
|
38 |
2
|
ad6antr |
|
39 |
|
simp-5r |
|
40 |
|
simp-4r |
|
41 |
|
simpllr |
|
42 |
|
simplr |
|
43 |
|
simpr |
|
44 |
33 34 35 36 37 38 39 40 41 42 43
|
comfeqval |
|
45 |
44
|
fveq2d |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
3
|
ad6antr |
|
51 |
4
|
ad6antr |
|
52 |
|
simprl |
|
53 |
52
|
ad5antr |
|
54 |
53 39
|
ffvelrnd |
|
55 |
53 40
|
ffvelrnd |
|
56 |
53 41
|
ffvelrnd |
|
57 |
|
df-ov |
|
58 |
|
simprr |
|
59 |
58
|
ad5ant12 |
|
60 |
59
|
adantr |
|
61 |
|
opelxpi |
|
62 |
61
|
ad5ant23 |
|
63 |
|
vex |
|
64 |
|
vex |
|
65 |
63 64
|
op1std |
|
66 |
65
|
fveq2d |
|
67 |
63 64
|
op2ndd |
|
68 |
67
|
fveq2d |
|
69 |
66 68
|
oveq12d |
|
70 |
|
fveq2 |
|
71 |
|
df-ov |
|
72 |
70 71
|
eqtr4di |
|
73 |
69 72
|
oveq12d |
|
74 |
73
|
fvixp |
|
75 |
60 62 74
|
syl2anc |
|
76 |
57 75
|
eqeltrid |
|
77 |
|
elmapi |
|
78 |
76 77
|
syl |
|
79 |
78
|
adantr |
|
80 |
79 42
|
ffvelrnd |
|
81 |
|
df-ov |
|
82 |
|
opelxpi |
|
83 |
82
|
adantll |
|
84 |
|
vex |
|
85 |
64 84
|
op1std |
|
86 |
85
|
fveq2d |
|
87 |
64 84
|
op2ndd |
|
88 |
87
|
fveq2d |
|
89 |
86 88
|
oveq12d |
|
90 |
|
fveq2 |
|
91 |
|
df-ov |
|
92 |
90 91
|
eqtr4di |
|
93 |
89 92
|
oveq12d |
|
94 |
93
|
fvixp |
|
95 |
59 83 94
|
syl2anc |
|
96 |
81 95
|
eqeltrid |
|
97 |
|
elmapi |
|
98 |
96 97
|
syl |
|
99 |
98
|
adantr |
|
100 |
99
|
ffvelrnda |
|
101 |
46 47 48 49 50 51 54 55 56 80 100
|
comfeqval |
|
102 |
45 101
|
eqeq12d |
|
103 |
102
|
ralbidva |
|
104 |
103
|
ralbidva |
|
105 |
|
eqid |
|
106 |
22
|
ad2antrr |
|
107 |
|
simpllr |
|
108 |
|
simplr |
|
109 |
33 34 105 106 107 108
|
homfeqval |
|
110 |
|
simpr |
|
111 |
33 34 105 106 108 110
|
homfeqval |
|
112 |
111
|
raleqdv |
|
113 |
109 112
|
raleqbidv |
|
114 |
104 113
|
bitrd |
|
115 |
114
|
ralbidva |
|
116 |
115
|
ralbidva |
|
117 |
32 116
|
anbi12d |
|
118 |
117
|
ralbidva |
|
119 |
21 118
|
sylan2b |
|
120 |
119
|
pm5.32da |
|
121 |
|
eqid |
|
122 |
3
|
ad2antrr |
|
123 |
|
simplr |
|
124 |
|
xp1st |
|
125 |
124
|
adantl |
|
126 |
123 125
|
ffvelrnd |
|
127 |
|
xp2nd |
|
128 |
127
|
adantl |
|
129 |
123 128
|
ffvelrnd |
|
130 |
46 47 121 122 126 129
|
homfeqval |
|
131 |
1
|
ad2antrr |
|
132 |
33 34 105 131 125 128
|
homfeqval |
|
133 |
|
df-ov |
|
134 |
|
df-ov |
|
135 |
132 133 134
|
3eqtr3g |
|
136 |
|
1st2nd2 |
|
137 |
136
|
adantl |
|
138 |
137
|
fveq2d |
|
139 |
137
|
fveq2d |
|
140 |
135 138 139
|
3eqtr4d |
|
141 |
130 140
|
oveq12d |
|
142 |
141
|
ixpeq2dva |
|
143 |
1
|
homfeqbas |
|
144 |
143
|
sqxpeqd |
|
145 |
144
|
adantr |
|
146 |
145
|
ixpeq1d |
|
147 |
142 146
|
eqtrd |
|
148 |
147
|
eleq2d |
|
149 |
148
|
pm5.32da |
|
150 |
3
|
homfeqbas |
|
151 |
143 150
|
feq23d |
|
152 |
151
|
anbi1d |
|
153 |
149 152
|
bitrd |
|
154 |
143
|
adantr |
|
155 |
154
|
raleqdv |
|
156 |
154 155
|
raleqbidv |
|
157 |
156
|
anbi2d |
|
158 |
143 157
|
raleqbidva |
|
159 |
153 158
|
anbi12d |
|
160 |
120 159
|
bitrd |
|
161 |
|
df-3an |
|
162 |
|
df-3an |
|
163 |
160 161 162
|
3bitr4g |
|
164 |
13 163
|
anbi12d |
|
165 |
|
df-br |
|
166 |
|
funcrcl |
|
167 |
165 166
|
sylbi |
|
168 |
|
eqid |
|
169 |
|
eqid |
|
170 |
|
simpl |
|
171 |
|
simpr |
|
172 |
33 46 34 47 168 169 35 48 170 171
|
isfunc |
|
173 |
167 172
|
biadanii |
|
174 |
|
df-br |
|
175 |
|
funcrcl |
|
176 |
174 175
|
sylbi |
|
177 |
|
eqid |
|
178 |
|
eqid |
|
179 |
|
eqid |
|
180 |
|
eqid |
|
181 |
|
simpl |
|
182 |
|
simpr |
|
183 |
177 178 105 121 179 180 36 49 181 182
|
isfunc |
|
184 |
176 183
|
biadanii |
|
185 |
164 173 184
|
3bitr4g |
|
186 |
9 10 185
|
eqbrrdiv |
|