Step |
Hyp |
Ref |
Expression |
1 |
|
funcres.f |
|
2 |
|
funcres.h |
|
3 |
1 2
|
resfval |
|
4 |
3
|
fveq2d |
|
5 |
|
fvex |
|
6 |
5
|
resex |
|
7 |
|
dmexg |
|
8 |
|
mptexg |
|
9 |
2 7 8
|
3syl |
|
10 |
|
op2ndg |
|
11 |
6 9 10
|
sylancr |
|
12 |
4 11
|
eqtrd |
|
13 |
12
|
opeq2d |
|
14 |
3 13
|
eqtr4d |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
23 2
|
subccat |
|
25 |
|
funcrcl |
|
26 |
1 25
|
syl |
|
27 |
26
|
simprd |
|
28 |
|
eqid |
|
29 |
|
relfunc |
|
30 |
|
1st2ndbr |
|
31 |
29 1 30
|
sylancr |
|
32 |
28 16 31
|
funcf1 |
|
33 |
|
eqidd |
|
34 |
2 33
|
subcfn |
|
35 |
2 34 28
|
subcss1 |
|
36 |
32 35
|
fssresd |
|
37 |
26
|
simpld |
|
38 |
23 28 37 34 35
|
rescbas |
|
39 |
38
|
feq2d |
|
40 |
36 39
|
mpbid |
|
41 |
|
fvex |
|
42 |
41
|
resex |
|
43 |
|
eqid |
|
44 |
42 43
|
fnmpti |
|
45 |
12
|
eqcomd |
|
46 |
|
fndm |
|
47 |
34 46
|
syl |
|
48 |
38
|
sqxpeqd |
|
49 |
47 48
|
eqtrd |
|
50 |
45 49
|
fneq12d |
|
51 |
44 50
|
mpbii |
|
52 |
|
eqid |
|
53 |
31
|
adantr |
|
54 |
35
|
adantr |
|
55 |
|
simprl |
|
56 |
38
|
adantr |
|
57 |
55 56
|
eleqtrrd |
|
58 |
54 57
|
sseldd |
|
59 |
|
simprr |
|
60 |
59 56
|
eleqtrrd |
|
61 |
54 60
|
sseldd |
|
62 |
28 52 18 53 58 61
|
funcf2 |
|
63 |
2
|
adantr |
|
64 |
34
|
adantr |
|
65 |
63 64 52 57 60
|
subcss2 |
|
66 |
62 65
|
fssresd |
|
67 |
1
|
adantr |
|
68 |
67 63 64 57 60
|
resf2nd |
|
69 |
68
|
feq1d |
|
70 |
66 69
|
mpbird |
|
71 |
23 28 37 34 35
|
reschom |
|
72 |
71
|
adantr |
|
73 |
72
|
oveqd |
|
74 |
57
|
fvresd |
|
75 |
60
|
fvresd |
|
76 |
74 75
|
oveq12d |
|
77 |
76
|
eqcomd |
|
78 |
73 77
|
feq23d |
|
79 |
70 78
|
mpbid |
|
80 |
1
|
adantr |
|
81 |
2
|
adantr |
|
82 |
34
|
adantr |
|
83 |
38
|
eleq2d |
|
84 |
83
|
biimpar |
|
85 |
80 81 82 84 84
|
resf2nd |
|
86 |
|
eqid |
|
87 |
23 81 82 86 84
|
subcid |
|
88 |
87
|
eqcomd |
|
89 |
85 88
|
fveq12d |
|
90 |
31
|
adantr |
|
91 |
38 35
|
eqsstrrd |
|
92 |
91
|
sselda |
|
93 |
28 86 20 90 92
|
funcid |
|
94 |
81 82 84 86
|
subcidcl |
|
95 |
94
|
fvresd |
|
96 |
84
|
fvresd |
|
97 |
96
|
fveq2d |
|
98 |
93 95 97
|
3eqtr4d |
|
99 |
89 98
|
eqtrd |
|
100 |
2
|
3ad2ant1 |
|
101 |
34
|
3ad2ant1 |
|
102 |
|
simp21 |
|
103 |
38
|
3ad2ant1 |
|
104 |
102 103
|
eleqtrrd |
|
105 |
|
eqid |
|
106 |
|
simp22 |
|
107 |
106 103
|
eleqtrrd |
|
108 |
|
simp23 |
|
109 |
108 103
|
eleqtrrd |
|
110 |
|
simp3l |
|
111 |
71
|
3ad2ant1 |
|
112 |
111
|
oveqd |
|
113 |
110 112
|
eleqtrrd |
|
114 |
|
simp3r |
|
115 |
111
|
oveqd |
|
116 |
114 115
|
eleqtrrd |
|
117 |
100 101 104 105 107 109 113 116
|
subccocl |
|
118 |
117
|
fvresd |
|
119 |
31
|
3ad2ant1 |
|
120 |
35
|
3ad2ant1 |
|
121 |
120 104
|
sseldd |
|
122 |
120 107
|
sseldd |
|
123 |
120 109
|
sseldd |
|
124 |
100 101 52 104 107
|
subcss2 |
|
125 |
124 113
|
sseldd |
|
126 |
100 101 52 107 109
|
subcss2 |
|
127 |
126 116
|
sseldd |
|
128 |
28 52 105 22 119 121 122 123 125 127
|
funcco |
|
129 |
118 128
|
eqtrd |
|
130 |
1
|
3ad2ant1 |
|
131 |
130 100 101 104 109
|
resf2nd |
|
132 |
23 28 37 34 35 105
|
rescco |
|
133 |
132
|
3ad2ant1 |
|
134 |
133
|
eqcomd |
|
135 |
134
|
oveqd |
|
136 |
135
|
oveqd |
|
137 |
131 136
|
fveq12d |
|
138 |
104
|
fvresd |
|
139 |
107
|
fvresd |
|
140 |
138 139
|
opeq12d |
|
141 |
109
|
fvresd |
|
142 |
140 141
|
oveq12d |
|
143 |
130 100 101 107 109
|
resf2nd |
|
144 |
143
|
fveq1d |
|
145 |
116
|
fvresd |
|
146 |
144 145
|
eqtrd |
|
147 |
130 100 101 104 107
|
resf2nd |
|
148 |
147
|
fveq1d |
|
149 |
113
|
fvresd |
|
150 |
148 149
|
eqtrd |
|
151 |
142 146 150
|
oveq123d |
|
152 |
129 137 151
|
3eqtr4d |
|
153 |
15 16 17 18 19 20 21 22 24 27 40 51 79 99 152
|
isfuncd |
|
154 |
|
df-br |
|
155 |
153 154
|
sylib |
|
156 |
14 155
|
eqeltrd |
|