Metamath Proof Explorer


Theorem funcres2

Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion funcres2 R Subcat D C Func D cat R C Func D

Proof

Step Hyp Ref Expression
1 relfunc Rel C Func D cat R
2 1 a1i R Subcat D Rel C Func D cat R
3 simpr R Subcat D f C Func D cat R g f C Func D cat R g
4 eqid Base C = Base C
5 eqid Hom C = Hom C
6 simpl R Subcat D f C Func D cat R g R Subcat D
7 eqidd R Subcat D f C Func D cat R g dom dom R = dom dom R
8 6 7 subcfn R Subcat D f C Func D cat R g R Fn dom dom R × dom dom R
9 eqid Base D cat R = Base D cat R
10 4 9 3 funcf1 R Subcat D f C Func D cat R g f : Base C Base D cat R
11 eqid D cat R = D cat R
12 eqid Base D = Base D
13 subcrcl R Subcat D D Cat
14 13 adantr R Subcat D f C Func D cat R g D Cat
15 6 8 12 subcss1 R Subcat D f C Func D cat R g dom dom R Base D
16 11 12 14 8 15 rescbas R Subcat D f C Func D cat R g dom dom R = Base D cat R
17 16 feq3d R Subcat D f C Func D cat R g f : Base C dom dom R f : Base C Base D cat R
18 10 17 mpbird R Subcat D f C Func D cat R g f : Base C dom dom R
19 eqid Hom D cat R = Hom D cat R
20 simplr R Subcat D f C Func D cat R g x Base C y Base C f C Func D cat R g
21 simprl R Subcat D f C Func D cat R g x Base C y Base C x Base C
22 simprr R Subcat D f C Func D cat R g x Base C y Base C y Base C
23 4 5 19 20 21 22 funcf2 R Subcat D f C Func D cat R g x Base C y Base C x g y : x Hom C y f x Hom D cat R f y
24 11 12 14 8 15 reschom R Subcat D f C Func D cat R g R = Hom D cat R
25 24 adantr R Subcat D f C Func D cat R g x Base C y Base C R = Hom D cat R
26 25 oveqd R Subcat D f C Func D cat R g x Base C y Base C f x R f y = f x Hom D cat R f y
27 26 feq3d R Subcat D f C Func D cat R g x Base C y Base C x g y : x Hom C y f x R f y x g y : x Hom C y f x Hom D cat R f y
28 23 27 mpbird R Subcat D f C Func D cat R g x Base C y Base C x g y : x Hom C y f x R f y
29 4 5 6 8 18 28 funcres2b R Subcat D f C Func D cat R g f C Func D g f C Func D cat R g
30 3 29 mpbird R Subcat D f C Func D cat R g f C Func D g
31 30 ex R Subcat D f C Func D cat R g f C Func D g
32 df-br f C Func D cat R g f g C Func D cat R
33 df-br f C Func D g f g C Func D
34 31 32 33 3imtr3g R Subcat D f g C Func D cat R f g C Func D
35 2 34 relssdv R Subcat D C Func D cat R C Func D