Step |
Hyp |
Ref |
Expression |
1 |
|
funcres2b.a |
|
2 |
|
funcres2b.h |
|
3 |
|
funcres2b.r |
|
4 |
|
funcres2b.s |
|
5 |
|
funcres2b.1 |
|
6 |
|
funcres2b.2 |
|
7 |
|
df-br |
|
8 |
|
funcrcl |
|
9 |
7 8
|
sylbi |
|
10 |
9
|
simpld |
|
11 |
10
|
a1i |
|
12 |
|
df-br |
|
13 |
|
funcrcl |
|
14 |
12 13
|
sylbi |
|
15 |
14
|
simpld |
|
16 |
15
|
a1i |
|
17 |
|
eqid |
|
18 |
3 4 17
|
subcss1 |
|
19 |
5 18
|
fssd |
|
20 |
|
eqid |
|
21 |
|
subcrcl |
|
22 |
3 21
|
syl |
|
23 |
20 17 22 4 18
|
rescbas |
|
24 |
23
|
feq3d |
|
25 |
5 24
|
mpbid |
|
26 |
19 25
|
2thd |
|
27 |
26
|
adantr |
|
28 |
6
|
adantlr |
|
29 |
28
|
frnd |
|
30 |
3
|
ad2antrr |
|
31 |
4
|
ad2antrr |
|
32 |
|
eqid |
|
33 |
5
|
ad2antrr |
|
34 |
|
simprl |
|
35 |
33 34
|
ffvelrnd |
|
36 |
|
simprr |
|
37 |
33 36
|
ffvelrnd |
|
38 |
30 31 32 35 37
|
subcss2 |
|
39 |
29 38
|
sstrd |
|
40 |
39 29
|
2thd |
|
41 |
40
|
anbi2d |
|
42 |
|
df-f |
|
43 |
|
df-f |
|
44 |
41 42 43
|
3bitr4g |
|
45 |
20 17 22 4 18
|
reschom |
|
46 |
45
|
ad2antrr |
|
47 |
46
|
oveqd |
|
48 |
47
|
feq3d |
|
49 |
44 48
|
bitrd |
|
50 |
49
|
ralrimivva |
|
51 |
|
fveq2 |
|
52 |
|
df-ov |
|
53 |
51 52
|
eqtr4di |
|
54 |
|
vex |
|
55 |
|
vex |
|
56 |
54 55
|
op1std |
|
57 |
56
|
fveq2d |
|
58 |
54 55
|
op2ndd |
|
59 |
58
|
fveq2d |
|
60 |
57 59
|
oveq12d |
|
61 |
|
fveq2 |
|
62 |
|
df-ov |
|
63 |
61 62
|
eqtr4di |
|
64 |
60 63
|
oveq12d |
|
65 |
53 64
|
eleq12d |
|
66 |
|
ovex |
|
67 |
|
ovex |
|
68 |
66 67
|
elmap |
|
69 |
65 68
|
bitrdi |
|
70 |
57 59
|
oveq12d |
|
71 |
70 63
|
oveq12d |
|
72 |
53 71
|
eleq12d |
|
73 |
|
ovex |
|
74 |
73 67
|
elmap |
|
75 |
72 74
|
bitrdi |
|
76 |
69 75
|
bibi12d |
|
77 |
76
|
ralxp |
|
78 |
50 77
|
sylibr |
|
79 |
|
ralbi |
|
80 |
78 79
|
syl |
|
81 |
80
|
3anbi3d |
|
82 |
|
elixp2 |
|
83 |
|
elixp2 |
|
84 |
81 82 83
|
3bitr4g |
|
85 |
3
|
ad2antrr |
|
86 |
4
|
ad2antrr |
|
87 |
|
eqid |
|
88 |
5
|
adantr |
|
89 |
88
|
ffvelrnda |
|
90 |
20 85 86 87 89
|
subcid |
|
91 |
90
|
eqeq2d |
|
92 |
|
eqid |
|
93 |
20 17 22 4 18 92
|
rescco |
|
94 |
93
|
ad2antrr |
|
95 |
94
|
oveqd |
|
96 |
95
|
oveqd |
|
97 |
96
|
eqeq2d |
|
98 |
97
|
2ralbidv |
|
99 |
98
|
2ralbidv |
|
100 |
91 99
|
anbi12d |
|
101 |
100
|
ralbidva |
|
102 |
27 84 101
|
3anbi123d |
|
103 |
|
eqid |
|
104 |
|
eqid |
|
105 |
|
simpr |
|
106 |
22
|
adantr |
|
107 |
1 17 2 32 103 87 104 92 105 106
|
isfunc |
|
108 |
|
eqid |
|
109 |
|
eqid |
|
110 |
|
eqid |
|
111 |
|
eqid |
|
112 |
20 3
|
subccat |
|
113 |
112
|
adantr |
|
114 |
1 108 2 109 103 110 104 111 105 113
|
isfunc |
|
115 |
102 107 114
|
3bitr4d |
|
116 |
115
|
ex |
|
117 |
11 16 116
|
pm5.21ndd |
|